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INTROUUCTION,

Investigation of a system of equations, depicting dynamics of
atmosphere, is one of the most complex problems of hydromechanics.
Combination of movements different in character and scale, the enormous
role of hydrodynamic processes and energy conversion make it impossible
to use majority of simplifications usual for other problems. Atmosphere
as an actual physical system, to which it is possible to apply precise
quantitative methods, was first systematically investigated in the work
of M. Margules and specially in the work of the ﬂorwegian school
scientists, Many results of this period retain their significance even
at present; their systematic account could be found in the book of
Bjerknes V., ©Solberg H., Bergeron T., 1933, Greaf contribution to the
study of the dynamics of atmosphere was made By Soviet Scientists A.A.

Fridman and N.E. Kochin.

At present almost the only effective method for studying the
complete system of equations of atmosperic movements remains numeriecal
integration, and the problem does not yield to any complete and exact
logical analysis. Many significant features of atmospheric movements
could be defined in a simple linear model. The atmosphere could be
analyzed as a fine film on revolving sphere having definite elastic
properties, Within this film originate the waves, which sometimes
envelope the whole atmosphere. If the phase velocity of wave is very
much higher than the velocity of particles within the wave, linear
approximation gives very accurate result; otherwise only very appro-

ximate features of the dynamics of atmosphere could be defined.
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Atmosphere, taken as a film, is a very complex oscillating
system. Its elasticity ic epecified by many causes. Besides the fact,
that even with most idealized assumptions, this medium is not of simple
structure, air particles are affected by forces of various nature.
Firstly, it is forces of ordinary elasticity, bound with compressibility
of air. Secondly these are the buoyancy forces, specified by non-
uniformity of atmosphere in elevation, layering or stratification.
Particle, deflected vertically, if its state varies adiabatically,
acquirez density different from surrounding particles. The difference
Archmedes force and its weight forces it either to continue deviation
from original state with acceleration, or to return into initial state,
due to which there are oscillations close to equilibrium. In the first

case it is known as unstable stratification, in the second - stable.

For stability it is required and is sufficient, that the tem-
perature drop with altitude in atmosphere should océur gradually, slower
than the temperature drop in a particle adiaﬁatically displaced upward.
On an average the atmosphere is always stable, there could only be
individual zones of instability, mainly close to the surface of Earth,
where the conﬁection currents are being developed. The monograph will
analyse a certain averéged model of atmosphere, and therefore, it will
always be stable. Thirdly, thelatmoSphefé hasesone-gyroscopic rigidity;
reacting” to.any disturbaﬁcé by .the appeéarance .in if 6f .oscillating motion,
as in precessing top, since the atmosphere rotates jointly with Earth,

representing its own type of gyroscope.

Gyroscopic forces cannot be felt with motion on a very small

scalej in the study of these movements it may be assumed, that the
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atmosphere is on an average immobile and that the Larth is flat. Here

it is possible to separate waves ﬂith periods with pericds 5-10 min.,
bound mainly with the effect'of gravity forces, i.e. of buoyancy force.
For these waves, which are called the short gravity waves, elasticity

ls & non-essential factor, its influence is low. For movements on very
large scale ( such, as cyclonic vortex ) buoyancy force cannot be of

any significance. Here the determining factors are the gyroscopic force,

although the elasticity also has some effect.

Thus, .the different physical nature of these forces results in
movements, absolutely different in structure and scale, which correspond
to them. This state is found to be convenienf. It permits to study each
motion independently, i.e. in the study, for instance, of sound waves
to disregard both the Barth's rotation and gravity, and in the study of
shért gratity waves—compressibility, = Appropriate simplifications are
also beiﬁg doune by meteoroiégiéﬁs, in the investigation of large-scale
movements. This results every time in very negligible distortion of the
type of waves being investigated and in considerable simplification of
the system of equations, related with time reduction of its order. 'the
hydrodynamic system of equations, initiaily of fifth order, becomes
divided into two systems of second order, depicting acoustic and gravity
waves‘respactively, andlequation of first order for gyroscopic waveé

{( inertia waves ).

This is the procedure - in all the cases, when investipgation is
reguired for one particular type of waves in the resolution of concrete

applied problems. Meteorologist is interested primarily in the largest
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inertial-gyroscopic waves directly related with forecast of meteorolo-
gical fields, forccast of large-scale weather background. He is also
interested in gravity waves in the investigation of local events, The
largest gravity waves are of primary importance in the investigation

of atmospheric tides. Large—scale ( synoptic scale ) waves were studied
extensively bj B.N. Blinova and othef investigators. Ample literature
is also available on gravity waves, long and short, and questions of
atmospheric acoustics, for instance, on propagation of waves from high
intensity local disturbances. Eut from the point of view of the principle
it would also be of interest without going into individual structursl
details of spacific oscillations, to review the spectre as a whole,
defining the interdependence of its individual parts. In this case it
is found, as should have been expected, +that between the different
types of waves there is no existence of very shape boundary. There are
transient oscillations, which ars affected simultaneously by several

factorse.

We are trying to give as complete as possible spectrum pattern
of a system of equations of the fifth order. The problem of dividing
the spectrum into individual parts-acoustic and gravity has been studied
for quite'sometime, starting from the above - mentioned monograph of
V.Bjerkness and others { sce also Eliassen, Kleinschmidt, 1957 ). In a
more complete form it is given in an‘article by A.S5. Monin and A.M.
Obukhov (1958), and also in Eskart's monograph (1960). Thesé works
discussed the model of iscthermal atmosphere above =a fiat Barth. In other
works of the author ( 1961, 1965 ) this problem was generalized for the
case of rotating sbherical atwmosphere with stratification, épproximating

the real one.
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In the resolution of our problem the variables are divided, and
we obtain a sebarate problem on eigenvalues for the equation, which
includes only vertical coocrdinate, and also for the equation withrhori—
zontal coordinates. The seccond equation is quite independent of the
model adopted for atmosphere's stratification and also remains the same
for a composite atmosphere with variable temperature, for isothermal
atmosphere and for a uniform ocean. This is the so called Laplace's
equation ( tidal equation ), frequenfly applied in various problems of
the sea and ocean physics. In spite of the ! classicality Y of this
equation, its theory cannot be called completed. The main contribution
to the theory of this equation was made by the English astronomer Hough,
1897, 1898. He has found the asymptotic solutions and suggested numer-
‘ical method of solution for the case of an ocean of great depth. Hough's
sélutioﬁﬁ were successfully applied to the problems of the dynamics of
atmosphere's by Rossbiq, Héurwitz, 1937, 1940, and by Blinova (1943).
Blinova has shown, that asymptotic solutions of Laplace's equation in
the theory of tides could also 5e successfully applied to explain the
centres of the atmosphere's acfivity also for weather forecast. The
corresponding solutions of Laplace's equation are denoted as Rossbi
waveS. Jdhe same ésymptotes are, generally, sufficient to study the
semi-diurnal oscillations, connected with the tides in the atmosphere

( the reason, why the equation is célled tidal ).

However, if the need is to investigate the diurnal oscillations

1 Rossbi has found his solutions independently, apparently, not knowing,
that this is the ultimate case of Hough's resolutions for an ocean of

of grest depth.
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of the atmosphere or any other problem connected with inner waves in
atmosphere, or Rossbi waves in atmosphere not of the Barth, but of fast
rotating big planet, for instance, of jupiter, or the required asymptotics
of the Laplacian tidal equation in opposite extreme,case, for loy values
of the equivalent ocean depth ( this concept will be explained in Para 5
of chapter 1 ). This type of asymptote could be obtained and it will be
found, that both the asymptotes jointly cover practically the vwhole

possible range of values for the equivalent ocean depth.

Chapter 1 is introductory. The analysis in it is of the basic
equations of the problem and the sbove mentioned division of variables is

carried out.

Chapter 2 and 3 are devoted to the theory'of Laplacian tidall
equation, It should be mentioned, that here remains a lot which is not
guite clear, for instance, the question regarding invariance of the
aumber of nodes in fundamental function along the wave mode. True, even
-evury incomplete régults, obtained in chapter 3; permit to resolve
theorerically the gquestion regarding conjunction of the branches of the
asymntotes at low and high values of equivalent depth. Actually, at
present there is no real theory of special functions, connected with
the tidal Laplac's equation of ( Hough's functions ), such a theory as
available for generally-known special functions, with algebraic, integral

and other relations between them.

Chapter 4 discusses equation, pertaining to vertical coordinate.
The first paras present well known results in connection with isothermal

atmosphere. In the following paragraphs a lot of attention is being paid
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to the main problems regarding disposition of eigen-curves on the plane
of pargmeters for a more composite model of an atmospﬁere strgtified in
a real way. Since in this case we have an equation with variavle fac-
tors, not admitting of a closed analytical resolufion, thie gqualitative
investigations and computer calculations most significant become. The
deduction seems significant regarding alternation of eigen~-curves of our
marginal problem with a comﬁosite extreme condition, depending on self
parameter, and of a more simple problem with a boundary condition indep-
endent of it. This result will be found indispensable in chapter 6 to

prove the completeness of a system of eigen-functions.

In the investigation of an ultimate case of lonpg waves instead of
natural oscillations it is necessary to investigaté the forced oscillations.
This is carried out in the same way, as in Wilkes work (1949}, but without
the approximate‘quasistatistics, as done in that work. Because of this
we can also investigate the region of higheg frequencies and analyse the
ultimate transition to quasistatistics. The correlating curve, obtained

in chapter 4, contains the whole freguency spectrum, and unifies various

spheres of investigation.

Division of waves into types could - -be carried out in different
ways, It is possible, as it was done, for instance, by Monin and Obukhov,
to follow the behavior of resolutions with variation of the atmosphere's
parameters-compressibility and static stability factor - and in relation
to this behavior to assign the resolutions ﬁo one or another ( see chap-
ter 4 ), This division could be done on the basis of various types of

energies-kinetic, potential " thermobaric " and energy, bound with air
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eiasticity ( elastic energy )- in general the energy blance of oscillat-
ion. This is being dealt with in chapter 5, in which relations are
obtained permitfing without calculation %o GValﬁate the share of various
types of energy from the position of point, depicting the given oscil-

lation on dispersion curvee.

Energy composition éf oscillation is not only a2 parameter, ﬁhich
permits to carry out in the most physical natural way the elassification
of oscillétions; energy is included in many important formulas, for in-
stance, it is bound by a simple relation with group velocity. By means '
6f energy it is possible to clarify purely mathematical facts with
regard to monotony of natural curves. It is the most suitable metrics
for analytically~functional study of eguations ( chapter 6 ), whence
ensues the proof of completeness and fﬁrmulas for expansion according te
fundamental functions. The same metrics is used for the formation of
the perturbation theory for estimating perturbation of spectrum, caused
by an average wind velocity, averaged in altitude; and the weight in
this averaging is nothing else, but the energy density of undisturbed

oscillatione

Thus, chapter 5 is devoted to an all round investigation of this
most significant characteristic - energy. TFor instance, demonstration
of the " tieorem of virial " regarding equality of kinetic and potential
energy average values in the absence of Barth's rotation is given and
evaluation of the increasing share éf kinetic energy with the Barth's
rotation is made. The end of the chapter deals with the problem of

atmospheric wave guides. Short waves arc concentrated in separate layers
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of atmosphere ¢ short accustic wavés in layers with the lowest adia-
batic sound velocity, i.e. in cold layers at altitudes 17 and 8% km,
whereas the short gravity waves in lower layers of the highest relative

stability at altitudes 30 and 110 km.’

It is interesting, that for long waves a unigue inversion is evi-
dent- cold lavers serve as energetic barriers. The pattern of the
atmospheric wave guiﬁes given here is similar to that éhown by Pfeffer
and Zarichny (1963) and Press and Harkrider (1962), who obtained it

for a narrower class of waves and frequency interval.

Chapter 6 according to the applied mathematical apparatus is
gsomevhat different From the others. Here we demonstrate the completeness
"( two~fold ) of the system of fundamental functions, obtained in chapter 6.
This is a problem of ' non;claSSical " type. The natural parameter is inclu-
ded in the eqguation in a split-linear way; it is also included into boun-

dary condition. In this chapter the mefhods are of functional analysis.

However, reader, not interested in the purely mathematical side
of the matter, could miss this chapter, takiung on empirical formulas for

expansion factors of fundamental functions, used in para 5 of chapter 7.

As pointed out in chaptef 5, waves of various types have consider-
ably different phase and group velocities of propagation. If in a small
area of space at a certain moment there is a disturbance, from which wvaves
disperse to all sides, a part of energy, bound with excitation of acoustic
vaves, will soread out very quickly and in a little while only the atten-
wating gravitational oscillations will remein in the part of space close

to the source of disturbance.
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In chapter 7 we find the asymptotes of waves, generating from
an instant point source, confirming the just described intuitively
obvious pattern. Asymptotic solutions are very similar to precise
solutions given in the same chapter.' Chapter 7 also shows how to apply
the theory of expﬁﬁsion, in the fundamental functions evloved in pre-
.ceding chapter, to the p;cblem of disturbance propagation in spherical

and realistically stratified atmosphere.

The content of chapter 8 has already been mentioned.

In cbnclusion we mention just a few words regarding the specifics
of the present book. It is possible to investigate a very wide range of
events on basis of appraising arnd approximating considerations, using
mathematical apparatus as simple as possibke. This may help obtain
results useful for practical application. However, there are the works
of othersg,.,more mathematical nature. We speak ﬁot only and not so much
of more exact methods of solving the equations. Actually, the parameters
of these equations are naturally known to be of not very high accuracy,
and the eguations themselves aré éometimes over schematical. At a certain
stage in this case the need emerges to bring up the theory to a certain
degree of logical and mathematical precision and completeness with inevi-
table limitation of physical complexity of the problem. The present work
is exactly in this direction, which obliged us to bring up the reasoning

to some sensible degree of mathematical precision.

Thus, the development of mathematical formalism of theory bothered
us more frequently, than the diversity of concrete geophysical applications.
In this respect very gimilar to the existing works is a well known Eskart's

book (1960) and an article by I. Tolstoy (1963), the content of which is
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only slightly resembling the contents of the present monograph.

Chapter. l.

EQUATIONS OF THE THEORY O DISTURBANCES.

1« Equation of motion.

We shall assume, that the atmosphere deviates a little from a
certain mean state, which is a state of relative calm. In this state
there are no velocities, and temperature, T, pressuré p and densityi;
depend only on one coordinate - z the altitude. In this case tﬁEy are

connected by ratios

the first of vhich is the equation Qf state, and the second - condition
of static equilibrium. Thus, only one guantityy for instance, temper-
ature T{z) remains free. Hence we shall be taking into consideration
most frequantly the temperature of the so c¢alled standard atmosphere

{ Fig. 1.1. )} CIRa 1961 ( Cospar1 International Reference Atmosphere ).
The figure shows, that the temperature curve has two deﬁreSSion - in -
stratosphere at an altitude of approximately 17 km and a deeper one in
mesosphere at an altitude of about 84 km. At higher bepgins the conti-
nuous rise of atmosphere - thérmosphere. VWe assume, that the atmosphere
extends upto infinity and that the témperature rise is infinite. How-

ever, it should always be kept in view, that conclusions pertaining to

1Cospar - Committee on Ypace Research.
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-the bottom portion of atomsphere could have physical significance only,
when they arc independent or almost independent of the behavior of
temperature curve at very high altitude, about 150 km and higher, where
the applied equations represent extremely inaccurately the real movements
of étmosphere. At these altitudes the significance isacquired by such

factors as non~linearity of equations and viscositye.

Since the equations of motion are written in a spherical rotatory
system of coordinates, there are additional terms -~ Coriolis acceleration.
The Earth is assumed to be a smooth sphere of radius a, gravitational
acceleration ( which includes also centripetal moving acceleration )
being constant and directed toward the centre of the Earth. 1In equations
the quantities, which are the products of low deviation of the reguired
fields from their average values are neglected, i.e.. the equations are
linearized. The obtained éystem of equations for disturbances of.the

first order has the following appearance i

2u 1 .b - .

Bt = " Speinp ?ﬁf - 28dcosflt - 2951:1603, (1.1)
%m = -E;-:LF— —%%— + P_w.cose u, (o
Ow 1 .9 cp -
>t~ " - aﬁ - g F ~ 2wsinfw (1.3)

Here u,v,w - velocity components of the wind, directed respectively
west to east, north to south and vertically upward; ¥ - longitude ;6 -~
latitude addition upto {2 /2; P, f’ - deviations of pressure and density

A

from their average values P and P .
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FIGURE 3 1.l. Standard atmosphere CIRA 1961.

In meteorology it is the custom to neglect the Coriolis terms
containing sin 9. Tckart calls this neglecting as " traditional ". For
the sake of simplicity we make simplification, which would allow to
divide the variables. Apparently, this simplification does not affect
very much the results, which is confirmed by the following reasoning.
In-equafion (1.3) the Coriolis term is many orders lower than the gravi-

tational acceleration g, therefore, its disregarding is guite justified.

In the first itwo equations the Coriolis terms could be of signi-
ficance only in the_study of fhe larpest scale movements, And thesge
movements are highly anisotropic. The-horizontal scales of the fine
film = earth atmosphere - exceed many times the verticsl scales, corres-
pondingly horizontal velocities are many times greater than the vertical
one, This makes it possible to neglect the Coriolis terms, connected
with the vertical velocities. These terms cannot neglected only in a
very narrow belt around the equator, where cos Q'. 0. It should be

‘mentioned, that it would have been highly desirable to appraise more
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exactly the results of this traditional approximation, and the extent
to which the perturbation equations, obtained without the Coriolis

terms could be obtained by perturbation theory, by these terms.

To BEuler's equations (1.1)=(1.3) it is also necessary to combine

the equation of continuity

g’; v gf +pE = 0. (1.4)

Here X 4is taken to be the three - dimensional divergence

1 du 1 %)

X = a sinfg 9< * a sing 26

(vsin ) + %—';-9 .

Finally, in order to close the system of equations, we require
one more equation. We take for this the adiabatic condition, i.e.

preservation of anisotropy

dp _ _xp __aP
at B Tdt

=D-

Linearizing this equation we get

3p . 9p ~p _ .9p"
2t * dz T Tp- ST

. d"P
o =
4L - o.

2

We denote C° =X.p/p( C - adiabatic velocity of sound ). Using

equation of statics dp / dz = - gﬁ and substituting 3P/ 3t from

preceding '+ equation, we get

Dp’ -
—2E- = - Ppx + gwi.

Bt £ (105)
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Hence the dashes over p and P will be omited. Thus, we

have the following system 3

g‘; = - aPsin g; - 2w cosfU; (12"
aaz = - alp g% + 2weos § uj ' (1.2")
‘g: .. 11) %z - gpP : , (1.3')
22 . .px - P, (1.40)
—%l;—z'-ca;x TR (1.5')

2+ BEnerpy. Potential vortex.

Now it is not difficult to write the law of conservation of
energy for the system of equations (1.1')-(1.5'). For the sake of
convenience we shall analyse complex solutions, keeping in view, that
physical solutions will be_obtained, if we take the imaginary portion
of the complex solutiona.: It is sasy to check by simple differentiation

and substitution of time derivatives from eguations of motion, that

- jul2s [v]? +]wl2
A e AL kI

_ S e, .va 1 fe) - D ¢ u
= - Re la 5inf PG (pu*)+ = Sing 36 (pv slnﬁ)i-—-a—z'(pw )].

(1.6)
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Here Re means, that imaginary part was taken, asterisk - complex

conjugate.

P:(x-l)g+§;2=xR(Ta_y), (1.7)
where | = - 4T / dz - temperature gradient, Yy = (x - l)g/xR - adisbatic,
or equilibrium temperature gradient, i.e. a gradient, at.which particle,
displaced adiabatically in the vertical direction has continuously the
same temperature, as surrounding particles. Factorﬁis of hiéh signifi-
cance throughout the theory. It is denoted as the coefficient of static
stability. By integrating (1.6) over a fixed volume the integrél on the
right-hand side gets transformed into a surface integral. If the inte-
gration of (1.6) is done over the whole space with appropriate boundary
conditions, the exprescions on the right and left hand side will be zero.

This means, that the quantity

oM X 2, 1,12, lwp
R e e L
+-é-§-i-;-é—]p - caplz} sinffdffd¢dz (1.8)

is conserved. This is nothing else but energy, and therefore, in equation
{(1.6) on the left~hand portion - time derivative gives the energy density,
and on the right - divergence of the vector gives the energy flux. In

the formula for energy we shall distinguish four parts : kinetic energy

of the horizontal component of motion

@7 2 2
E, = S S S 3 lu 3 v sin Ua Dagpaz, (1.9)
g O 0 :
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kinetic energy of vertical component

¥ 5 '
By = S 2§ P —L‘“’—I—-———- sinf d Odc?d:z (1.10)
o} o] )

2

O

( hence these two types of energy for brevity will be called horizontal
and vertical energy ), elastic energy, counected with pressure fluctu-

ations,

(s RN Y |

o T |
S X \p\ 2 sin 0d DatPaz {(1.11)
é .

and, finally, energy connected with variations of entropy ( thermobaric.

energy according Ekeart terminology ),

¥

T2
. 2xXp

o ¢

Q

F

lp - p\ sined@dcf dz, (1.12)

&

The thermobarim energy is directly connected with the buoyancy forces,
affecting particle which has deviated vertically from the state of
sqguilibrium. If we assume the state of static equilibrium (lﬂ 0 )

a8 basic and at the initial instant of movement the entropy fluctuation

c
v

P
equal to zero throughout the movement time, since from equations (1.4'),

P - caf\ equal to zero, then, firstly, they will remain

(1.5') it follows

N p - cap )
Ot

:—Ff]-w v

and, secondly, thermobaric energy will be egual to zero, i;e. the sum
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of kinetic and elastic enerpy is conserved. This is the case of the

so called avntobarotropic flow.

Energy.is a guadratie quantity in relation to variables. It is
known, that, besides the quadratic conservable quantity, hydrodynamic.
equations of stratified fluid also admit a linear invariant - potential
vortex, brought in more fully by Ertel (1942). For non-linear equations

the potential vortex is equal to

() - grad 8 { rot V+ 200)
P

]

where 8§ =~ entropy, & = Sy in ( PP X)), This guantity could again be
multiplied by an arbitrary function of entropy § (S). Linearizing the
equation of potential vortex conservation, d&X/ dt = 0, we get for

the linear system the eguation of potential vortex of the following type

aﬂ’l B.Qo ago
=%t Vage Ve C

0! (1013)

where-flo -~ potential vortex component of zero order in relation to
disturbances, i.e. it i1s composed exclusively of.values, pertaining to the °
basic stationary state, and §11 - component of the first ordér. It is

easy to check by direct differentiation and substitution of derivatives

from equations (1.1")-(1.5'), that

) {i 1 b(ﬂnﬁﬂo 1 dv

1
It sing 2 38 T sin®  apge® T P
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2 .
(] e o
P

This is the vorte® eguation. If the model of flat Earth is

analyzed on the assumption of Coriolis acceleration invariability, wve

get the conservation law of the first order potential vqrtex,

an equation obtained by Monin and Obukhov (1958).

3. Laplace's equation of the theory of tides.

Let us take first the case of two-dimensional motion. For us now
it will be just a formal model, more simple than the general case of
three-dimensional motion. But to this model it is alsc possible to give

a physical meaning, as it is usually done in meteorology, if it is taken

into aceount, that the Earth atmosphere is a relatively fine film. There-

fore, in the first approzximation it could be assumed to be two-dimensional,

averaging its paraméters’in thicknesa. Exactly the same equations are
obtained in the study ﬁf surface waves in a uniform ocean. Two-dimen-
sional egquations could be formally obtained from three ~ dimensionsl,
assuming vertical wvelocity to be equal to zero, and the other parameters

independent of altitude. Bquations (1.,1'),(1.2') and (1.5') give

Su. 1 Ay

- = - - 2ocosbBv,
ot ap sinf oF Y
dv_ 1 op

+ 2wecosB u,

ot T ap ael

Op

3 - CZPX. (1.15)
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To start with for the sake of simplicity the Earth's rotation is not
taken into account. Then in this system it will be necessary to assume,

that (O = 0 3

U o= - 1 op
t ap sin o
1_ 3p
v, = - ==
t ap 90 '
P, = c2pX. - (1.16)

By differentiating the third equation by t and excluding u

and v by means of the first two equations, we get the wave equétion

rid
23F 2 2
2 1 1 1 3 . goapt ¢
Pttt = C J4 — sin 0 { = Ap ).
52 sinae sing 3¢ an aa

If the resolutions are assumed to be dependent on t by exponential

law et t, the p will meet the equafion

2
-0°p = 2 A, (1.17)
. a

In other words, p should be the fundamental function of Laplacian
operator. Obviouély, the Laplacian operator did not result by chance.
For system (l.16) there is separate direction, it is invariant in res-
pect of selecting spherical coordinates, or invariant in relatign to
swinging of sphere. Therefore, differential equation of the second
order for the scalar value should also be invariant in rélation to these

swings. The most common equation of this type is the e@uation (1.17).
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Thus, the appearance of equation (1.17) has a purely algebraic cause.

A different pattern is evident for the system of eguations (1.15).
Here there is one separated direction - direction of the axis of rota-
tion of the Earth's. The system is no longer invariant in relation to
any swings, but veriant only in relation to swings around this axis. Ve
carry out the same procedure. of excluding wuw and v, in the case where
it is done at once in the simplest way, assuming dependence of resolu-
tions on t exponential. From the first two equations

iju = - L ap.-EUJ cos P v,

a"P sin@ Ehd

i0v = - 1 22 + 2wcos Bu
aF 20

we express algebraically u and v through p

a = ig ‘i cosd O e —1 ° p
&aagffa-cosaﬁ) f 20 sing acf- P
O . D ctegff 2 I
v o= 1 + M oy - (1-18)
haud (£2-cos”p ) { 28 f 9%} 3 |
Here f = U / 20~ dimensionless frequency. It is inverse to

period of oscillations, expressed as semidiurnal.

Substituting u and v dinto third equation we get

2
- O-P = c I“P‘ (1.19)
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where

£2 BY sinf (B i ctgh @ )|,
£

sinf 6 Zﬂmsaﬁ 0 £ o
2 . 1 B 2
£ ictg) O 1
4 + - : (1.20)
fa-cosaﬁ £ 009 sin2 g af2

Operator F could also be written in the following way @

1 ' ; o
F = .f &\ fzsin 2B 3 . -if (f2+cosL6 ) 3
= — )

2ecos® (£%—cos” ) > °b (:fa-cosae)?‘ a9«

vhere 25 -~ the usual Laplacian operator on single sphere. Hence it is
clear, that operator ¥~ is Laplacian ﬁk, perturbed by terms, which
convert into zero, whenoe = 0 ( i.e. £ =¢2 ), This operator genera-
lizes Laplacian in anisotropic case. Zquation (1.19) bears the name
of Laplace equation of the theory of tides, or tidal Laplace equation,

and the operator ¥F- tidal Laplacian.

4, Three - dimensional case. Hguation for divergence,

Let us go back now to the general case of three-dimensional
equations. For solutions, depending on ¢ accérding to the law e” at,

we have a system of equations :

i0u = = L Q 2wcosB v, ' (1.21)
apf sinfj
iy = - l_ %—-g— + 2wecosf u, E (1.22)
ap
¥
i0w= -~ —3’-——%—5— - g —j_'-— ' (1.23)
P r
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iop = - PXx - -2 v, (1.24)
igp = - C° pPX + gpW. (1.25)

Here ¢ could only be material, since the energy has to be

preserved and there cannot be indefinitely increasing or transient

soluticns.

We solve the first two equations for u and v. VWe now obtain
the known formulas (1.18). Substituting these expressions into the

formula for divergence X, we get

-1 i -2
X = >z + =, F ( = ), (1.26)

where F - the tidal Laplacien, From (1.23) and (1.25) we exclude pressure

. 1,1 _df .2 . P
iz = -~ io‘(- d: gw+gz¢’z+xg]{—0 Xz)-g—:—-.
P I
From here by means of ( l.24% ) we exclude density
2 L2
Cro= g, = (x - 1) gt -¢C X, (1.27)

Substituting into formula for divergence ( 1.26 ) pressure p,
expressed through X and W  formula (1.25) .
v

= 1 2
X = 3zt ogaz FO-C% % gt {(1.28)
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Now we get two equations (1.27) and (1.28) for X, w. Hence we

exclude w, for the object of which we apply to both portions (1.28)

operator (- g SL « We shall have
2 2 2
2 do 2 P ¢ . )
c Xzz+ [ ) xg} XZ + gX + O'aaa F < z £ - ]3'x>,_ 0, (1.29)

Thus, we havc one eguation for one variable gquantity: X. The
given method for exclusion of variébles is used in the theory of tides
( see, for instance, Wilkes, 1949 ). But there the analysis is of
somewhat simplified equations ( approximation of quasistatisticse e The
simplification ig that in the initial system of equations vertical
accelerations are.neglecfed, i.e. the left - hand portion of egquation
(1.3) is assumed to be zerc. Correspondingly equation (1.29) is simpler

with the use of quasistatistical approximation : it is short of two

02c2

g

terms {)‘2}{ and X

It should be mentioned, that the only characteristic of the
atmosphere's stratification, included in the obtained equation, is
C2 = X RT., Instead of c2 we shall bring in sometimes equivalent alti-

tude of uniform atmosphere H(z) = c2 /X e

For the sake of convenience we also carry out replacement of
variables removing the term with first derivative in altitude, i.e.

which brings the eguation to a self-adjoint type

Z
x= § omGy o X9 Ty (% 00 RO
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These formulas could zlso be written in this way @

x = = In "ﬁ?“~ y £ = \i“%? Vs

po
where po = is the pressure near the ground.

In the new variables we sh&ll have

2.2
(_1;__ UH) » —5 F(Ugﬂ y - -;L];y>=0. (1.30)

o a

5¢ Division of variables.

In equation (1.30) we divide variables. For this we assume
:‘3’ ((‘Fi aix ) _-:llj (EF' 6 )E(X)t (1031)

Tor each of the multipliers we'll have a corresponding equation

A
rY o+ U = o, (1.32)

Hlere a new constant h appeared as the invariable of variables
division. This is not only a formal coanstant, it has a certain physical
meaning, about which we shall speak further. As it will be shown, the

solutions exist only with material values of h. But this constant could
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be both positive and negative. In equation (1.32) only the horizontal
coordinates are included. Parameters included in. this equation ( earth
radius and angular velocity ), characterize horizontal structure of the
atmosphere. In equation (1.33) only the vertical coordinate and equi-
valent altitude of thehomog@neousatmosphere H, characterizing vertical

stratification of atmosphere are included.

Thus, equation (1.32) is obtainable with all possible models of
the atmosphere's vertical structure, whether it is isothermic atmosphere,
or the standard atmosphere taken in this work, or a lHomogemecusocean.
Bquation (1.32) is also‘obtainable even in the study of such a simple
model as two-dimensional compressible film in the field of Coriolis
forces. In the last two cases equation (1.33) is not preéeny 3 h does
not appear anymore in division of variables. In the case of a hom@g-
eneous oceanr h means simply the depth of this oceaﬁ, and in the case
of two-dimensional film h = cz/g, vhere ¢ = adiabatic velocity of

sound , ¢ =X f}/ﬁ .

Thus, while we are dealing with horizontal structure of oscil-
lations, the atmosphere could be replaced by ahomogeneous ocean of depth,
h natural oscillation of which has the same frequency and horizontal
structure q? (q>. § ), as the analyzed oscillation of atmosphere. This
is why h bears the name of dynamically equivalent depth for the given

natural oscillation in distinction from statically equivalent depth H{z).

If we zare oconcerned only with the vertieal structure of oscil-
lations, we apply equation (1.33), and the adopted horizontal model,

i.e. parameterst® and a will be found to make no difference. In par-
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ticular, it could be assumed, that the Earth is flat ( a—0> ) and

does not rotate ( W ——<), It has already been said, that at 2o —- 0

operator F converts into Laplacian on a single sphere, and at a —» ©°
1

the sphere itself converts into plane; F in this case tends to

2
: a
Laplacian on a flat plane. Bguation (1.32) changes into equation

2 -
AV, W oo, (1.34)

gh

which is an ordinary two-dimensional wave equation on a flat plane. Phase
velocity of these waves ia </ gh, since is frequency. Thus, the
meaning of parameter h is clarified from one more side, from the view-
point of its role in equation (1.33). If the vertical structure of
atmosphere and the given oscillation y(x) is preserved, the atmosphere
assumed to be horizontally flat and non-rotatory, and the soiution to

be sinusoidal, then h is equal to a depth, at which phase velocity.
Ccp= gh. (1.35)

It should also be additionally mentioned, that the model of flat non-
rotating ; Barth represents very well the horizontal structure of oscil-
lations of not very large horizontal scale, when the curvature of the

Earth and its rotation have no appreciable effect,

Equations (1.32) and (1.33) should be resolved under certain
limits. A4s regards the équation (1.32), the guestion here is quite

clear., This equation is on a closed sphere, and the reguirement is only
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the regularity of the solution, since in this case there are no boundaries.
Equation (1.33) requires two boundary conditions, as this equation is of
second orderrinAx. One of these conditions is set on the Earth's surface.
Actually, on the surface of the Barth it is necessary to have w equal to
zero, and hence to obtain the required boundary condition for ¥ ( it
will be obtained‘further )« As regards the condition on infinity, it
should be nmentioned, that since H~4—=co at x-—= ¢ , the solutions of
equation (1.33), as can be easily proved, approach very quickly ( faster
than the exponent ) towards infinity, except one, approaching just as

fast as the exponent towafds zero. Lf limits for solutions are set at
infinity, then out of all the solﬁtions only one remains-transient. This

is the condition thaf will be adopted.

~ Now let us return to boundary condition on the surface of the
flarth. Let us also find in the form, where the variables will be

divided.

Wl , 0, X )=V (g, §OIW GO (1.36)

Then equations (1.27) and (1.28) will be :
2 - S X
(o~ ~Brw - fw =05 -1 e - xey'y

(g N —%ﬁ—)tu + w%p#af ={( 1 ﬁ? ) ¥, (1.37)

h

Resolving this system as algebraical in relation to w and w', we

find w
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Out of this relation it is possible to findzu , after y has
been found. As mentioned previously, it is reguired, that on the surface
of the Barth % = O. For those solutions, in which ;o= £ #0, this

is equivalent to boundary coandition

yf+(“§“_c—%ﬂ)y:0 amo(. x = Q. (1-59)

As shown by (1.38), for solutions, in which 2- M%_ # 0, the

limit oi‘y is eguivalent to the limit of .

Now our ﬁroblem‘is reduced to the following. There are two equ-
ations ¢ {1.32) and (1.33). These contzin two parameters ¢ and h, which
have to he selected‘in such a way that our eguations to have sclutions,
meéting boundary the conditions. Each of the equations could be studied
separately. If some value is fixed for one of the parameters, the result
will be & ﬁroblem on eigen values‘of'the second. Varying the values of
the first pérameter, we find new eigen values of the second. Thus, on
the plane of these ﬁarameters we get a sét of curves, which we shall name
the self-curves of the equations In the same way it is possible to plot
self-curves of the second equation. At the intersection points of self-
curves of the first and éecond equations we will get the required eigen

values ¢ and h, at which both the eguations will have the solutions.

6., Peckeris soiution.

. 2 '
A unique case occurs at = g/h. Uptil now the solution was
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of equation for divergence X, or for y. After the y has been determined,
the values should be obtained of the remaining quantities, including W
As the equation (1.38) shows, that at cg= g/h there would be solution

wy, 1t is necessary, that

e (- _g_> s o. (1.50)

Thus, besides the fact, that ¥y should satisfy differential equation
0of second order (1.33), it should also be the solution for the first order
equation (1.%40). If these equations were independent, then, as a rule,
there would not be these solutions. But here, 1t seems, the following
interesting state occurs. For any (¢ and h, bound by relation ¢72= g/h,
there is indeed a soultion for {(1.33), which satisfiés all the aet boundafy
conditions and, moreover, the first order equation (1.40). To be more
exact, it will be shown, that at gaz—g/h any golution of the first order

equation satisfies also the second order equation.

We differentiate (1.40) and instead of v we gubstitute its

expression from (1.40). The result is

H' H 1 2
yn'i'“ﬁ'" y"'<h - 2>.Y=Os

which coincides with equation (1.33) with acounting for 6?= g/h. Since

it is assumed, that H increases at infinity, the soultion of (1.%0) at
infinity quickly vanishes. Therefore, the boundary condition at infinity
is found to be fulfilled. Boundary condition {1.39) on the surface of the

Earth is automatically satisfied as a result of equation {(1.40).
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It would seem, that from the evidence presented, it is possible
to deduce; that any pair of 0O and h values, bound by relation 02=g/h,
is a pair of eigen values, i.e. that determination has been made of one
of the equation (1.33) self-curves = curve ogz g/h. In this case it is
found, this curve is absolutely independent of H, i.e. on stratification,
if only H would increase on.infinity ( sufficieht, if it does not
decrease ). However, it may be assumed, that the obtained solution is
extraneous, not corresponding to the physical set up of the problem. In
fact, after the ¥y value has been determined, it is necessary to determine
the values of the remaining unknown gquantities, primarily w. Eguation
(1.38) is more unsuitable for this object, as both the portions get con-
verted into zero. Application should be made of the system of equations
(1.37); both eguations of which happen to be in our case identical. TFor
determination of w selution has to be made of any of these differentinl
equations with respect to Tv has to be solved. In this case it is nece=-
ssary to satisfy boundary condition Zo =0 at =x = 0. If solution of

homogerneous equation

. H 1 _
We (== -5 Y Ww=0

X
is denoted by @, ( apparently, T, = exp | (H/h - 1/2)dx). then
s -

¢ xH_y ¥

=1d

o= og H (1. ——) g~ dx,
or

x x
i __2 b4 1

S)(_h —5-) dx { ® Q- ’;1—*{)92 { (5= - dax

Y Te Q dXO



(32}

It is easy to aee, that with the increment of altitude x at all

values of h , except individual, for which

X .
1 H
2 g tmgm - mgw) ax

20
| o - 2, ax = 0, (1.51)
Q

this solution quickly tends to infinity.

Thus, for every h solution for y is plotted, which satisfies
the condition of limit at infinity, but in this case w happens to be
limitless and éo'quickly increasing, that the energy of oscillations is
found to be infinite., This means, tﬁat these oscillations cannot be excited.
As will be shown in chapter 6, the completeness of the system of funda-
mental functions takes place, if solution {3 = g/h is not taken into
account, i.e. arbitrary sclution could be expanded into linear combination
of the remaining fundamental functions. In view of this we shall assume,

that solution - = g/h  has no physical meaning.

We remind, that at 0'2 # g/h the damping of .y at infinity was
equivalent to damping ofzw « For solutions under analysis at damping ¥
the vertical velocity quickly increases. If from the initial condition

we set the limit of o, these solutions become superfluous.

We discussed in such detail one particular solution due to the
following circumstance. As we will see further, this sclution results in
a whole class of waves, the existence of which was first discovered by

Peckeris (1948) with the use of isothermic model of atmosphere. Here it
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also shows, firstly, that the curve C? = g/h is a self-curve of equation
(1.33) for any stratification, and secondly, that not the less corres-
ponding solutions should not be taken into account, as they are, apparently,

devoid of physical meaning.

It should be mentioned, that 02 = g/h happened to be self-curve
only due to assumption, that H at infinity does not decrease. Otherwise

it may not be so.

In the next two chapters a theoretical solution will be provosed
for the equation (1.32) for horizontal component, in chapter 4 - theore-

tical solution of equation (1.33) for vertical component.
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Chapter. 2.

LAPLACIAN EQUATION OF THE THEQRY OF TIDES.

1. laplace's equation, Integral relationse.

In the present chapter a step-by-step study of equation (1.19)
will be made. In spite of the fact, that, beginning from Laplace, this
equation was analyzed by many investigators, its theory cannot be taken

as completed.

First of all without difficulty it is possible to separate long-
Y

itude &, assuming, thatJ (P, §) = 18 FPF(cos 8), &= + 2 eeenoe

Then §y (cos ¢ ) satisfies the eguation

2
P b i‘gi-‘-’-z—#:o,

where operator Fé ~ operator F, in which a/bqrare everywhere replaced

by is. In more detail

2 R
f 3 sinf Ja) 5
sing 59 K fz-cosae { 35 + ctgh - )] +

2 - ' 2 2 .2
+ —t - ctgh L - 8 Yo 2 I w0, (2.1)
fa 2 Y . 2 gh
~Cos g sing
Same as Qor £ = §/2 y 8 could be positive or negative. fguation

(2.1) includes only s/f, i.e. if there is a solution 0f~@ for some s

and f, then exactly the same solution is available for -s and -f. In
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other words, the solutions are always available in pairs

+ 1 ( Ot+s f )
. $ (cos 8).

Assuming for diseretness,, that s is positive, and ¢ could have
signe The actual solutions are obtained as real and imaginary parts of
a complex solution. They will have the form cos (0 t + éf? ) P (cos & )
and sin ( gt +lscp) $ ( cos O). If s/f > 0, the waves are directed

east to west, if s/? < 0, west to east.

Bringing in a new variable /* = cos 6 . ve get

2, 4 I 1 , 2. 4 # -

(1_P)d}1+sf.& 2. pe (1"‘/“)7171"%'%‘“ g =
2 2 2

- ﬁ)ﬂk',c#), y -t G

Bguation (2.1) or (2.2) is also called Laplace's eguation of

the theory of tides, and its solutions - Hough's functions.

Equation (2.2) has special points : firstly, those are ends of
segment MU= *1 (or "8 =0, ), secondly, its value ispih=3 f ( of
latitude f for which cos ff = & f bear the name of critical latitudes ). If
the solutions are expanded into series within the range of special points

}i= + 1, it can be discovered, that at each of these points.there ig
one solution, which is the product (1 - ,ﬂa)”gh by analytical function,

and one solution with logarithmic branching. 4s regards the critical
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latitude, there could have been danger here, if the solutions were dis-
continuous at this point ( or had discontinuous derivative ). It would
have been necessary to seek conditions at discontinuity gee Brilloin
work, (1932), devoted to overcoming the pointed out difficulty . Actually
t is difficulty is fictitious, because in spite of the discontinuity
factor of the equation, it is easy to show by expanding solutions at

these points into series, that they are continuous and even analytical
within the region of these special points. ' There is one non-trivial
solution, which converts at a special point jointly with its derivative

into zero, and for other solutions the relation is fulfilled.

(1-22)0¢ (+£)-s¥(+2) =0,

Anyhow the existence of c¢ritial latitudes have still one compli-

cation, which we shall discuss later,

Besides,the azimuthal wave number s, equation (2.2) includes
two parameters : oscillation frequency f and the parameter y, which

will be used in this chapter instead of dynamically eguivalent depth h.

Complications, comnnected with formal presence of special points,
could be avoided, if following Eckart (1960) equation of the second order
is replaced by a system of two first order equations, introducing new
function.é

{(1-;123-5‘-’};-%&% W= ( £2 - ) é(py,
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2
H s 2
@ - p? L e\ Gw=| - a -2V G e

The first one is used for determining the functions é s then

the equation ( 2.2 ) gets reduced to the second equation only.

Now we prove, that for any real value of § the eigen values of
¥ are alwéys real. With this object we multiply the first equation by
a *( 4) ( the asterisk means complex conjugate ), the second equation

is replaced by the complex conjugate and multiply by ¢ (H), we add

these equations, divide by 1 =~ #2 and integrate by # from - 1 to 1.
Herewith it should he mentioned, that although the points at the ends
are special, the integration is possible, since the golutions convert

s
into zero because of ( 1 - ¥ 2) 2.4+ We shall get

1 ll SZ . i 2
°=3 1../‘2‘51 d’”%\f?—( ) -X]M i

- 1w
or 1,2 fi2 1 2 .
S 5] | 2
[ e [ P . |1 au
T 2 3 3
1 -1 £ 1. A5 . (2.8)

Ah —
| ik

Hence it follows, that y 1is real. TFrom this formula it is
possible to make one more important deduction. BEigen value ¥y, generally
speaking, could be both positive and negative. But for -;2 N1, i.e.

. -

for periods less than semidiurngl . y is always positive.
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In exactly the same way it is possible to prove one more important
relation-orthogonality of fundamental functions 1y, and Q¢J2 for various

¥ ( at one and the same f ). With this object we write down all the

equations which satisfy ib‘) 5111V2,§1;

[( 1- f )%“%&}‘WZ“ (1% - Gy

2
S

:g—‘- (1~ P ) ;} 4]‘2.

The last two equations are replaced hers by their complex conjugate. Ve
multiply them respectively by Fo* '4f » ﬂf from the sum of the
k (;2’_2’ 1? 1! 7
first and the fourth eguation we substract the sum of the second and third,
divide the result by 1 - ﬂ? and integrate from - 1 to l. At Y1 # ¥, we

shall have

l * ,
f Y1 g2 au =o. : (2.5)

2. Fundsmental curves, Asymptotice at low V.

Thus, setting arbitrarily the values of parameter f and deter~

mining eigen values of parameter Y y Wwe get in plane ( f, Y} a set of



(39)

fundamental curves. Simple reasoning permits to fix, that thege curves
cannot intersect. Indeed, let us assume a different case. Let it be,
that at £, approximating certain value-fo, two eigen values Vll and'y >
merge into one, Y 0° In this case the fundamental functions either strive
towards two different, linearly independent functions, or to one and the
same. The first is eliminated by the condition, that there is only one
solution, which at the end of the segment converts into zero, whereas

all the others convert into infinity. Thus, there cannot be two linearly
indepéndent solutions, regular at the end of segment. The gspectrum of

‘¢igen values is simple.

Now let both the fundamental functions strive towards one and the

same function, i.e. Yy qb o? ﬂf 2__?q¥0. On one hand it could be assumed

1
thatay 1, 1)y, and hence their limits as standard, [y a3 du=1. On
- o
the other hand,-¢;l andip‘a are orthogonal toward each other [:see formgla

1
( 2.5 )] . Then within the limit § 11;0 ¥2 dpt = 0. The obtained cont-
-1

radiction proves, that with continuous variation of parameter'f' thers
cannot be the merging of eigen values and fundamental functions, i.e. in
the language of algebra, there cannot be formation of Jordan cage. This
is a simple result of self-adjoint or the orthogonality of fundamental

functions.
+

Let us carry out now a more detailed investigation of the shape
of natural curves and their disposition in plane. Let us analyse first
their ultimate behavior at some extreme values of parameters. UWe start
from two simple cases, which were well known at least to Margules (1393)
and Hough (1898), The first of these cases pertains to asymptotic beha-

vior of self-curves for high frequencies, i.e. at high ff values., In this
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case the system ( 2.3 ) could be approximately written as i

(12 )22 d1V - f2§ ’

. :
(- &) -‘i‘—-é:\ 2 -cl—}ﬂ)\{l‘i’

From here we may exclude the auxiliary variabletp-, therezfter

obtaining for

(1 - u° )\If"-auqr J” Va2 y¥=o.

This is nothing else, but Legendre equation. It has uniform
solutions at £2 y=n{n+1J). In this case ¥ = P%, (M). Thus,

we get the following asymptotic formulas

\f\A;\/ n ( ?4+ 1) ’

“?;;i (M),

n = 8 3 S + 1‘ ....".‘ . ( 2‘6 )

Actually these ésymptotics were obtained in chapter 1, when as a result
of ultimate transition {0~ O eguation ( 1.3% } was deduced. True, there
was one more ultimate transition, a—s ® « But if the last transition 1
is not implemented, the\ operator will become Laplacian on a sphere of

s radius, eigen values of which are - n (n+1)/ az, and the result
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iz asymptotic ( 2.6 ).

|

Fig. 2.1 Asymptbtic behavior of self-curves of Laplace

tidal equation at high ;r"'l.

2) L = n{ n ; 1) :

by £1 - 1 1

) .Jn( n+ 1 f 'ngTE—J

To illustrate the obtgined results we shall use the plane
( ¢t ) y_l ). This is convenient, because £t is proportional te
period, and Yy -1 to dynamically egquivalent depth. Self-curves of equation
( 2.6 ) are shown in Fig. 2.1. by lines, asymptotically approaching the
abscissae at‘Y'-l‘—;Uo « BSuch is the first of the known asymptotic

formulag., But, it turns out, that at'y “l— oo all ecurves are not

approaching the abscissae. The second known asymptotic curve pertains
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to the case of high “l and finite f. 1In this case the system could

approximately be written as :

[(1')“2’ a- st ca el

e

<

i 2
L(l— },12) -dgF-bff.&j(f 82 Vo,

tH

Here it is easier to eliminate é instead of'uf 4+ For 5 we

get equation
(1 2) -2 J - .Wém-é + __S___ é =0
- M é #é 172 3 = Y.

The result is again the Legendre polynomial, regular solutions
of which are available, if s/f =n({ n + 1 ). In this case é =:Pi (pnd.
As regards the J", it could be shown as a linear combination of two

adjoined Legendre polynomials. We have the following asymptotic concept :

2 5 2 S
n (H"S*I)Pn+1 + (n+l) (n+s)in1

<]
f~ SrasTy 'V~ SnEl ’ ( 2.7 )

n=8y B8+ 1y essece

Thus, as the first asymptotic term we get the equations of
horizontal asymptotes. Fig.2.1 also shows these asymptots. In para &

hoth the given asymptotes will be made more exact.
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"The following condition should be mentioned. While thé asymptote
(2.6) does not depend on the sign of F(at least the given chief term ),
formula (2;?) gives positive values of f, i.e. pertains to waves, propa-

gating east to west.

1

Thus, according to behavior at y 2% 311 the self-curves of

Laplacian tidal eguation are divi@ed into two groups-some approach to
abscissae while, others step out on horizontal asymptotes,distinct from
the abscissae axis. Following Hough we shall call these curves of the
first and second nature in relation to highfyﬂl. With one and the same
fixed s there is a topmost curve among those of the first type, which cor-
responds to n=s, and they accumulafe toward the abscissae. Among the

- curves of second type the lowermost alsoc corresponds to n = s.

We are speaking here.only of positive values of parameter’y’l; If
we apply negative values, then first of all it will be noted, that there
cannot be any asymptote at /f/—seo , since there is no existence of‘y-
negative values at /f/ > 1, as pointed ocut in the preceding para. On the
contrary, asymptotics curves (2.7) are totally retained even ét negative

1

~ . -1 .
Y T, i.e. at Y — ~eo , The curves approach each of these horizontal

asymptote from both sides at"Y "l and at“g-l-—» -,

In chapter 3 we shall obtain new asymptotes, at 10w‘Y-1. It will
be found, that the activity region of both the asymptotes jointly cover

practically the whole range of values and depiet wholly all the self-curves

3, Conversion to type convenient for application of Galerkin's method..

We pass on to the plotting of algorithm for calculating self-

curves of the Laplacian tidal equation, First of all we note, that the
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fundamental function asymptotically is either Legendre function Pi (M),
or a linear combination of two such functions. It is also natural for
the remaining parameter values, when asymptotes are inapplicable, to

seek solutions in the form of linear combination of some number of these
functions P‘Sn,1 . Psn1+1 g see 3 Psn1+N s i.e..to approximate differ-
ential equation by a finite algebraical syetem, or in other words, to
apply Galerkin method. As a preliminary the system of ®quations should
be converted to a more convenient form. Why the system { 2.3 ) is incon=
venient, could be explained in the following way. Differential operator,
included in our equations, ( 1 = ¥u2 ) ¢/ap , applied to Legendre
polynomial Pi , same as the multiplication of this function by ¥ , is

replaced by its linear combination p® and P° . But, unfortunately,
n-1 n

+7
if the egquations are used in the form, in which they are written, the
Legendre functions would have to be multiplied also by }‘2, and this

will result in the appearance of functions p® and P° .
_ n-2 n+2

This will make the system of equations considerably more complex

and bulky. It has to be converted so, that there is no multiplication

by /12. Ve denote

2 2
L:(l.... a)d_.__aﬂ d - 5
# d}@ Y2 L2

( this is nothing, but the operator in the left portion of Legendre
equation ). The result of this second order operator's effect on Psn

is very simple
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IP° = - n(n+1)p%,
n n

Let us apply to the second of { 2.3 ) equations differential
operator {( 1 - }12 Yafap - sp / £, and then substitute [( kR p? )

d/ap - sp / f]ip from the first-equation. We get

—
~
et
]
Ry
O
“:I“‘
i
@
mlt
e
—
-
i
o
p1g,
=
+
rq%:
[ )
e
I

By expanding in the left portion the product of operators and

dividing equation by I -~ ,ua » we shall have: "'~

d d s e pe '
{Tﬂﬁ(l‘ ) i S }é =

21 u?)

2, 2 2
g™ ( £5- A% ) d 2 s M

= _w(l_ )‘qj,t. f.r‘-
fztlu_az)é dft FON e 17

or

@4»-?—)5 .—:Y[ (-—%—4-2)1“ - (1~ /12)—(-?7;‘]1{;.

This equation will be the Tirst of the two, which compoge our

working systenm.

The second squation is obtained in the same way, but now to the
first equation of (2.3) we apply operator (1~ M‘a) &/dM + spu /£, and

the expression { (1- ‘FZ) a/apt + sp /fJ ﬁ we substitute from the
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second equation. Then ve get

2 2
—aq;u" (1- /112) dd},l - 2 - 25 4 » Ip' =
(1~ )
2 2 2
- £ - 'u [=] ‘LV (f2 2
= - - )Yy -2
e v - epg

The term ( £ - Iﬂa )}'ﬂf we convert in the following way.

We replace it by ( 1 - ﬂa YV o+ ( £ - 1 YYW  and the

first of the two terms we again express from the second equation. Ue

shall have
I TS SN R S FY
d i iRy 1. M2 -
= (1 ,u)-c{"lﬂ+5fpé w‘i’-aﬂﬁ (== yV .
By conversion, we finally obtain
L., (2 -yl ¥ =
mwfn+?—+f-1y = (——--—2)/“ +(l-/J.) /u é.

Now we write jointly both the obtained equations :

(L+%-) =y{(-§—+2),u - (1- ,u} /A]‘F

-

2

L-—-f,—-l-—ia—-i-(fa-l%ﬂ‘\'}f [i-—--c?)}* + (1= p3) }J(&’ .
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This aystem has a higher order ( fourth ), but due to above
indicated reason it is found to be more convenient for the application
of Galerkin's method. Moreover, as will be seen from the next 6hapter.
this system will help to find the asymptotics of characteristic curves
at low —l. However, there are some guestions, as to whether the
system {( 2.8 ), being the result of.system ( 2.3 ) contains extraneous
resolutions ? After all it was obtained by rising the order of system.
" Having found eigén values of this system's parameters, do we have the
assurance, that they pertain to the initial ( 2.3 ) system ? In the
" Supplement ' to the present chepter this guestion will be infestigated.
Here we only formulate the result. It is found, that extraneous solu-
tions are indeed present. The system ( 2.8 ) has regular solutions at
all whole values s/f and at any Y , i.e. there is theﬂappearance
of characteristic curves—hoﬁizontal straight lines, passing through all
the points of axis &/f. At the same time they are noﬁ the character-
istic curves of system ( 2.3 ). Other system does not have extraneous

solutions system { 2.8 ). . Fow we can safely utilize this system.

Here is another form of the Laplacian tidal eguation. This form
is investigated in the Yaglom's article (1953). This work investigates
the example, mentioned‘bj us of the two-dimensional flow on the surface
of & sphere., The field velocity is shown through current function and
potentiala Tha_system of equations in Yaglom's article with slightly

changed denotations is as follows

is1¥s isPse 1P+ Q- /“2) %—- = 0, (2.9a)
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itLp+ isP - pLr ¥ - - 49 -%-}-?—+ LYt =0,  (2.90)

ityx +L & =0, (2.9¢)

where'ﬂ? s ét) and J{ =~ respectively current function, potential and
pressure, or more exactly their portions,ldepending on polar angle. Other
notations are the same as above. Let us fix correspondence between the
tidal Laplacian equation and the éystem ( 2.9 )e Let o , é be
solutions of Laplace's equation { 2.3 ) and hénce also of ( 2.8 ). VWe

determine functions i@', q5 ' and in the following way. Assuming

Ti=VY . (2.10)

Assuming further, that q; is determinable from equation (2.9¢),

andlp' from equation

- 1 M2 g |
§=_i=§__1;r+ 7 ,d‘;ij. (2,.1;)

Then these functions satisfy the whole system ( 2.9 ), This fact
is proved in the " Supplement " to this chapter. The meaning of the sys-
tem ( 2.9 )} is the same as of system ( 2.8 ) 1 it is redifferentiated
system of Laplace's equations. VYhen the system { 2.9 ) was being obtained
in Yaglom's article an excessive differentiation was carried out in
transition from velocities to equation for vortex and divergence, It
will be shown, that sometimes it is convenient to use the system { 2.8 ),

sometimes - system { 2.9 ).

4, Calculation of characteristic curves of lLaplace's eguation of the

theory of tides.
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We shall seek solutions in the form of series of fixed and adjoined

Legendre polynomials

[ =]
._S 2n + 1 (n - sl pS
W= , B 2 (n+s8)! "n°?

n=g
oo 4
N ) 2n + 1 (n=-58) o5
é _\/ ) b 5T Fa* (2.12)
n=g

We substitute these series into system ( 2.8 ), using in this

case the known recurrent relations :

8 _  n-s5+l 8 n+ 5 s
’UPn T 2n+l n#l T TZn + 1 Pn—l,

ap® '
2 n aln - 8 + 1) .. (n+l){n+s) .5
(- A7) ap - - 2n+l Pn+l * 2n+l inl,

s _ _ L8
LP” = n(n + 1) P .

Equating factors at Pi with similar indices, we get i

s | . 3 (n;s)(n+a) s
{;n(n + 1)+--§-X b = EEMBIErTSY (1; +n + l)an_l+

+ “v (n-s+1){n+s+1)

=]
Gral)(ones) 7 - 12 )an+1,
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: \
g s | -1 2 —
—n(n+1}——i-,—+f2_l + 5 -1 a,

- (n -~ s)(n + 8) (.5
- *V 2n = 17(2n + 1) ( r-np-1 ) Ph1 *

. {n - 5 + 1Xn + s + 1)
(2n + 1)(2n + 3).

8
(- +n) b, (2.13)

From this system it is possible to eliminate either a or bn'

Eliminating bn we get for a_ a differential eguation

-1 _
‘Y ap= Ly sa, o+ Ma, +la o = = S (2.14)
where
: 2
' Mn = f -1 -+
(-2 +n ) E&-n-1)

f b

(n - s)(n + s)(~%~ -n + 1)

+ . — 4
{(2n - 1){(2n + 1)(*§"-+ n) [-%— - ni(n - 1)]

{n-5+1){n+s+ 1)("%— +n+2)

*+ '
(2n + 1)(2n + 3)(5— - n - 1) &—%— SRR 2)]

- 'V (n+s5 +1)n+s+2)n -5 +1)n~s + 2)
n (2n + 3) W[ (2n + 1)(2n + 5) &{%-_ (n + 1){n + 2)]

we wont write eguation for bn s a8 we wont have to use it further.
- Instead we shall write differential equations, which could be obtained

from the system of equations { 2.9 ). If it is assumed, that
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o)
_ _ :_“,,; 2n + 31 (n - s) o8
if— n 2 {n + s)! n !

o0 .
v 2n + 1 {n - S)! 5
e Z n v\[ - 2 {n + g)! Pn ’ {2.15)

then apparently,

oo —
@_ P F S an 2n + 1 (11 - G)! Ps
= 1 Z_\ Ilzn-bls 2 (n+s)! n
n=s _

and

5 Nl ‘(n-s)n+s) n+l |
{"1—"' - nln + 1)3 b=y ( (2n - 1)(2n + 1) n_ %n+1 *

+ (h-s+ Vs +1) n -~
Gn + 1)(2n + 3) 10 + 1 “n+l ,

{N(n + 1)+ iy - fa\A;;

= WJ (é: : igggn*+si) {n - 1}n + lfgd_ +

n ~s5 +1)n +s5 + 1)
(2n + 1)(2n + 3)

+*
M
T
o

n{n

n+l. (2.16)

This system is reduced to one equation
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y o~ Paations ol T e Y i

Ln—2 bn_._2 + Mnbn + Lnbn+a =0, n ;; B, (2.17)

where
— b b 2 '
M K;n{n . 1)_15}\ N (n = 1)°(n +1)7°(n = s)§n2+ f; R
(2n - 1)(2n + 1) Y‘(n - 128y "t
¢ sf - (n = 1-Jnf2]
— no(n + 2)°(n - s + 1)fn + 8 + 1) ,
ST @RIV +3) (e v 1P+ 2)2 Th s
izn w s +1)n-~s+2¥n+8+1)n+s8 +2)X
L Xnln + L){n + 2)(n + 3)

n - (20 + 3) (2n + 1)(2n + 5) (n + 1)7(n + 2)2 "t a )

#Sf = (m+) (M) §

System { 2,16) is similar in form to ( 2.13 ). This system
is investigated in the mentioned Yaglom's article. Generally, everything
pertaining to system { 2.9 )} and its consequences is borrowed from this

article.

Before, explaining, in what way equation ( 2.14% ) could be uszed
for calculating eigeﬁvalues of “Y y we return to previously obtained
asyymptotic formulas ( 2.6 ) and { 2.7 )} and find their exact.défini-
tions. One of the posazible methods for fiﬁ&ing‘asymptotes atfy\"l——;co
consists in expanding all values an,’ I:»r1 and f inte series according
to the order of }[ and equating of ternms, containing in the same order,
from both sides of equations ( 2,13 ) or ( 2.16 ). In this way it is |
possible to obtain, for instance, first exact definition of asymptotic

formula { 2.7 )
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(n - s)(n + 8)(n +1)°
S n(n + 1)+ \/[ GGa - 10 + 1) 2

(pn +1 - s8)n +1 + s)_n2\ . (2.18)
{(2n + 1)(2n + 3}(n + 1% .

In the same way it is possible to obtain also the following
terms of expansion, although there is no special need for that. This
method is described in detail in the author's article (1961). Ve

demonstrate again the first exact definition of symptotic formula (2.6)

=1~ 2 1 8 |
N im - fna(“l)ax (229

Another possible method for finding asymptotes: is shown in
Yaglom's article. It consists in finding the solution required for an
infinite system of equations ( 2.17 ). This system is recurrent, there-
fore, the solutions always exist, at all the values of parameters T
and . However, what we need is not just any bn, but ouly those series
at which the series (2.15 ) converge, i.e. bn should tend to =zero at

—~
ne—s oo 80, that b2 < oo . This condition should be obtained for
selecting the eigen value for all the parameters. For asymptotic
appraisal it may be assumed, that all’gg , for certain value of n, are
equal to zero. Thén instead of the infinite system of equations we get

the finite system.

System { 2.17 ) binds all factors through one. Therefore, it
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expands into two. For one of these n = 5, 5 + 2, .ess 4 and for the

other n = s + 1, 8 + 3, «vs. The solutions correspondingly expand into

thoge, for which’gf is even, and odd, and

odd, and‘ﬂ-even.

into those, for which"qf is

In order that the system would have non-trivial solutions, its

determinant must be equal to zero. For the first of the systems

o

Ms Ls 0 0 - - -

—_ ~ —

Ls Ms+2 =3 %) 0 =
o~ — —~

© 542 Ms+l+ Ls+4 .-

and for the second
— ~
Ms+1 Ls+1 ° © vt
~ —r —
s+l Ulsaz Ls+3 ° Tt
o~ —
0 Ls+3 Ms+5 LS;E . e .

At.Y "l oo the diagonal elements

the non-diagonal elements have order O (V).

1
¥
1)
3
1
L}
]
1]
;
! = O, (2'203.)
i
[}
[}
]
1
]
]
L ]
'
- — ;
0L
N-2 MN'
1]
1
1}
1
'
1
¥
t
L}
1= 0, (2.20b)
1
1
1]
t
1]
1
t
1
]
~ ~
]
© LN-l MN+1:

approach to constants, and

In the expansion of deter-
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minsnt all products, escept the product of diagonal elements, have
order of at least 0(“{2 ). Therefore, as the first approximation it
is possible to assume determinant as equal to product of diagonal ele-

ments. In this case equation ( 2,20 ) is denoted simply as

— ~ ~ ~—

k"is - 1\15".2 . I"IB+‘|+ « e ¢ }VIN = O,
— o~ —~ ~
Ms+l' Ms+3 * Ms+5 MR MN+l = 0.

Hence it follows, that for every n ;3 s there is a solution

at Mn=0

(n = 1)%(n + l)%ﬁn - s)(n + 8)
(C2n-1)(2n + 1) [(h - 1ll}e nZY ~1

~Z— = nln + 1)+ .
¥ +

-

+a8f - {n-1) nfai

22(n + 2)%(a -5 + 1)(n + 858 + 1)
(2n + 1)(2n + 3)[ (n + 1)%(n + E)EY -l

+ sf =(n + 1)(n + 2) fE]

The roughest approximation is simply é? = nln + i). In the
right-hand portion of the above formula £ could be substituted by

~ this rough apProximation, and this will change the whole formula only

to terms of further lower order. We will get
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(n - 1)2(n + l)a(n - s5)(n + s)

wzwm = nln + 1)+

+
f (2n - 1){(2n + 1)[(11 - 1)%21“1 .
+ Eszn_l(n + l)al
2 2
+ n{n + 2)(n =58 +1)n + & + 1) . (2.21)

(2n + 1)(2n + 3) [(n + 1)%(n + 2)2],'"1_

- 250 %(n + l)--]

This approximate formula was obtained by Hough. Further it will
be seen, that it gives a good approximation in a wide range of‘y ~1
vzlues, and only for the very low values of this parameter should be
replaced by another formula, which will be carried out in the next chapter.
It should be mentioned, that formula ( 2.18 ) could be obtained from
( 2.21 ) by expanding into series in order of’Y + Formulas ( 2.21 ) and

( 2.18 ) are very similar in accuracy, and only for some low values of

n and & the simpler formula ( 2.18 ) gives appreciably worse results.

Hough's formula { 2.21 ) pertains to oscillations of second type.
Now ine similar way, but with the help of ( 2,14 ) ve shall deduce a
formula for qscillations of the first type. Repeating exacily the above
reasoning, we come to conclusion, that there is a need to find such values
of parameters_'y -1 and f,lat which the following determinant will be

equal to zero



=1 !
! - s ® @
' Ms 'Y Ls © 0 S
1
1 1
[} ]
: L M ~ —1 L 0 .« = ® E
! s 542 Y 5+2 :
s o
: O M - "1 :
! 542 VA selt * 0 ° !
] t
: 4 # & 8.8 & » & & * » *« o 5 & & & ws » » :
: 11
! ¢ & ¢ L -P‘I s - H
: -2 Y@

(2.22a)
or determinant -
-1 ' .
P - - . .
:Iis+l 'Y Ls+1 © 0 ;
' X
: :
-],
! L M - 0 . & H
! s+l s4% Y 843 '
i E = Oo
: 0 L M e oyt |
H S+3 845 Y ats * 0 * E
1
E L] L ] - - - L3 - - - - - - - » - - - - - - E
L ] -l ]
: « o e« L M - !
| N-1"M+1” §
{(2.220)

At £f-—= oo the diagonal elements increase much faster than the

Z ),

non-diagonal / the first are of order 0 ( f the second 0 (1) .

Therefore, the approximate formulas are obtained by equating diagonal

. elements to gmero




(58)

(n-a)n+o) (- -ns1)
{2n -« 1}(2n + 1)(%-:- n){"-ﬂ%— - n (n - l)]

+

(n-—s+1)(n+s+l)(-—-?r—¥n+2)

. (2.23)
(2u + ){(2n + 3} (——E’f— “n - l)[-—?.—- -~ (n+ 1)(n + 2)]

-+

Formula ( 2.19 )} could be obtained from here by expansion into

series according to the orders of 1/f.

Formulas ( 2.21 ) and ( 2.23 ) represent ogcillations of the
second and first type at sufficiently high'Y -1 values. However, on
one hand, many pract;cal probléms require calculation of characteristic
curves in tﬁe zone, where these approximate formulas are known to be
useless. On the other hand, having only these formulas, it is impos-
sible to judge, how far théy are correct regarding the behavior of the
characteristic curves of Laplace's eguation as a whole, With this
object these curves were calculated on slectronic computer. The simplest
method of calculation is the solution of characteristic eguations (2.22).
The convenience here is that cone of the parameters, namely’Y"l enters
in this eguation in a " classical " way. Thus, by imparting partial
values to parameter f, we get the usgal problem on calculation of eigen
or fundamental values of Jacobi type matrix. The differential equations
(2.17) did not have this advantage. Both the parameters enter into these

equations in the same inconvenient way.

Let us do some summing up. By raising the orders the Laplace's

tidal equation was reduced to the two different forms, convenient for
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expansion into series according to Legendre polynomials. The form {(2.9)
permits to find a good expression for approximate values of f of ‘the
rsecond type at high‘vwl, more exact, than the one resulting from the

first form of equations. On the other hand, form {2.8) provides conve~-
nient expression for asymptotes of the first type_gt high“v—l. The

fo?m (2.8) results in, what is, apparently, speciaily important, convenient
method of numerical determination of eigen values of the parameters, in

the next chapter it wiil be clear, that equations (2.8) make it possible

to find the asymptotes at low values df—Y“l.

5. Results of characteristic curves.

Phus, it is possible to find characteristic curves of the
Laplace's equation of the theory of tides by resolving characteristic
equations (2.22a) and (2.22b). In practical calculations the deter-
'minantslwere of the twentieth order. Simultaneously with'y -1 eigen
values the determination is also of characteristic vectors, i.e. sequ-
ence of a., values - expansion factors of function’lffrom the set
Legendre polynomials. If the eigne values was obtained from the system

‘ . . . . 5 8 8
(2.22a), the expansion is according to functions P~_, P~ ., BT i 1eees

23 S

r ? N > » =]
but if from (2.22b), then according functions P P” 439 PRSf5%?:::«'

[
s+l

In the first case'qf is an even function(ft, and ﬁjjsodd, whereas
in the second case — inversely. In the first case we name resclutions
as even type resolutions, in the second case - odd type resolutions.
Using the asymptotic formulas (2.21) and (2.23), it should be kept in
view, that for resolving even type we should take in formula (2.21)
n=8+1ly, 8§+ 3, esee, 2and in formula (2.23) n = 8, 8 + 2, 5 + b, and

for odd type resolutions - inversely.
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Pige 2.2, Calculated characteristic curves.

Fige2.2 shows results of calculations on electronic computer of
even type curves at s = 2. On the right, at highﬂY"l values, the curves
are very well.,approximated by those marked with crosses, calculated from
formulas (2.21) and (2.19) ( the corresponding n values are written
next to curves ). In fig. 2.2 is seen a bunch of curves of the first
type, approaching at jrl'*;ao the axis of abscissae. 'At!th —3% 0 they
approach the axis of ordinates and are being approached on the right by
the second type curves, each moving away from its asymptdte s/f = n{n+l).
According to the proved, the curﬁBS“cannot intersect. The meaning of

figures in brackets will be explained in para 6.
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The Fig. shows, that characteristic curves are present also to
the left of the ordinates axis, i.e. at negative"vhl. According to the
proved in para 2, the negative ecigen values of'Y’l could be only at
£L 1, i.e. 8/f > 2. The Fig. shows, that immediately above the point
s/f = 2 appears a bunch of characteristic curves, moving away to the
left and upward. Uhile rising tﬁey one by one separate from the bunch
and approach from below the horizontal asymptotes - the same s/f = n{n+1)

asymptotes, as with positive‘{_l for the second type curves. The cal-

5428, [

Fige 243+ Characteristic curves in coordinates f —, -

culations lose their accuracy at very 10w‘Y*1, i.e., within the narrow
.hand along the axis of ordinates. Therefore, the calculations do not make
it possible to follow, how the characteristic curves in negative half-
plane enter imto axis of ordinates. Two assumptions are possible here:
either they all gather at one point of the axis - point s/f = 2, or each
cof them arrives at its own point. In the next chapter it will bg shown,

that it is the first alternative that takes place.
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In Fige 2.3 a graph has been plotted of the same curves, as in
Fige. 2.1 and 2.2, but in coordinates ( ful,‘Y') ( without adhering to -
scale ). From this figure it is possible to discern, that it is quite
natural to assume, that curves at negative Y and the curves of second
type at positive'Y are the same curves, continuously transient from the
left half-plane into right. Nevertheless, coordinates ( f"l,'Y“I ) will

hence be used as before.

One of the sections of the first type top curve ( n = 2 ) has
many times attracted the attention of various investigatiors; calculation
results are available in literature of this section's characteristic
curve, for instance in Wilkes book (1949). We are speaking here of the
environs of £ =1, i.e. s8/f = 2. The frequency of oscillations here
is 6= 2¢5 4 iee. the period is half a day. The fundamental functions
are asymptotically similar to sin(gt + 2+ &o ) PS (), which corres-
ponds to the following tidal structure: four junction meridians moving
at rotation speed of the Earth, and the resolution does not convert into
zero anywhere. These resolutions play the main role in the theory of
tides. The value s/f = 2 corresponds, according o our calculations
to)/—l = 0,0899, ‘which in conversion td. dynamically equivalent depth
h is 7.96 km. On the axis of abscissae are plotted also h valuese.

Fundamental functions have the following appearance
2 v2 P2
—_ ]
'\.p'_ az P2 + &LF PLI' +a6 P6 T scesss

For s/f = 2 our calculations give

~
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1#‘: Pg - 0,08700P§ + 0,004433P2 - o,oooouspg + aun (2.24)

The results are similar to those, obtained by Peckeris (1937)

sec also Vilkes, (1949) .

The theory of tides is dealt with in detail in Wilkes' book, and
also in Siebert's review (1961). We point out for comparison, that for
the next, second from the top curve of first type, i.e. at n =4 the

fundamental function at s/f = 2 is such ¢

V= 0,576 Pg + Pi ~ 0,k3h Pg + 0,024 p§-+ cene

Here the predominant is the second component. Fig. 2.4 shows similar
curves, but for negative f values, which, as we know, means wave pro-
pagation west to east. These curves are distinct by the absence here

of the second type curves.

It is most instructive to plot the same curves, as in Fig. 2.1,
but in logrithmic scale, which clearly shows every exponential relation.
Fig. 2.5¢ -~ shows this type of curves. Fig. 2.5 a shows the case of
5 =1, Pig. 2.5b - 8 = 2, Fig. 2.5¢c - the case of s = 3. Bach of these
figures contains curves of even, as well as odd type. In each figure
there are one or two curves of the first type ( n = s, 8 + 1 ) and three
bottom curves of the second type. By short dotted lines are drawn asym-
ptotic curves (2.21) and (2123). Here again it is clearly shown, that
these asymptotic formulas quite satisfactorily depict characteristic
curves at Y =1 % 0,05 ~ 0.1. In the figures it is clear, that with

reduction of'y;ﬂ'almost'at once begins to act another asymptotic, as the
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curves cnnvert into straight lines. Long dashes show the straight lines,
which are asymptotically approached by our characteristic curves. We can
see, moreover, that this new asymptotic.at“low’Ypl also divide all curves
into two bunches. The top“Bunch corresponds to exponential relation fjr%=
= const, and the bottom - to relation fafyﬁé const. The number p in the

figure will be explained in the next chapter; this is a number in the

corresponding formula of asymptotics.

LTS

1 1
A _ 2 Iy’
Fig. 2.%. Characteristic curves for s =

0

2, f C.

As will be seen further, the so called Rossbi waves, which are of
high significance in meteorology, correspondsfor the case of the earth
atmosphere to]’—l values of 0.1 order, Therefore, for their depiction
the asymptotics, obtained by us previously, are quite sufficient., However,

many other questions of the theory of oscillations are bound with shallow
° ,
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depths h ( or -l‘) and the behavior of characteristic curves at these
low values becomes of considerable interest. The fact, Just remarked,
of the presence of certain exponential asymptotics at low }/“l, dis-
covered during calculations of characteristic curves on electronic com-
puter, made it necessary to investigate this éuestion in a theoretical .
way. The obtaining of this type of asymptotics will be dealt with in

the next chapter. It should be mentioned, that finding of asymptotics

at low'Y_l requires finer means, than the finding of asymptotics at high
'Y"l. If in the finding of asymptotics at high-yfl it was possible tq

omit the low terms of equations, here we are face to face with the problem

of low parameter at senior derivative.

10 E

M

Qo

10

o -l ' 1 { _-'_
0,001 0,01 O 10y

Fig. 2.5« Characteristic curves in logarithmic coordinates.

a) s =1, b)s =2, ¢l 8= 3.
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We have already mentioned the double ultimate transition c0-20),
8300 3 l.e. transition to a model of flat non-rotatory Zarth. What
happens in this case with characteristic curves? If is directed towards

zero, the system (2.3) will be

gh
whence
2 2
(l—}la)"P -E}MP '1f)u2 *Zhyqj"oi

i.e. W is Legendre function Psn, a2 52 / sh = n{n + 1). The whole

curve coincides with asymptotics of the first type. Horezontal asymptotes’
have withdrawn inte infinity. If now a—so0 , the curves concentrate
limitlessly, filling the whole plane, the spectrum converts into conti-
nuous.  If it is assumed, that jointly with a increases also n, so that
n/a—s3 k ( k-wave number ), the characteristic curve for the given k

will be

6= YV gh k,

i.e. phase velocity of wave is equal to |/gh, which is what was pointed
out in preceding chapter. For very long waves, commensurable with dimen-

sions of the Barth, the concept of phase velocity loses its meaning.
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6. Uave type and the number of resolution points.

The eigenvalues, disposed on one and the same curve, belong, as
it is said, to onme and the same mode or wave type. What characterizes
this wave type? As long as one of the asymptotes is active at high'y —l,
i.e. at the base of each curve, the fundamental function'd)is similar
to spherical function ( for tlhe curves of the first type J or to
linear combination of two such functions ( for the curves of second
type )e In this case the number of the curve characterizes the number
of points of the fundamental function. Now we'll introduce denotations
for individual modes. DBach curve will be marked by a double number
{n, s ); s =is familiar to us azimuthal wave number, number n for
curves of the first type will have the values s, 8 + 1y 8 + 24 ssse 4
j.e. this is the n number, which participates in asymptotics¢~95n(p)
for the given mode. TFor the curves of second type we shall provisionally
write negative number n < 0, in order to distinguish them from the
curves of first type. In this case =n will take on the values =~
-85y =8 =1y =5 =24 ees » Thus, for mode { n, s ), n < O the
asymptotics at Y TT> %  uill be i § ~ stni (M). Functions 1 ,

¢ , pertaining to mode ( n, s ), we denote through sn‘f(}i),

=1
é n,f(}L)'

As mentioned earlier, the curves in half-plane of negative }l—l

would be quite natural to consider as continuation of the second type
curves in positive half-plane ( at f 7> 0, of course )« From omne
half;plane they pass into another, breaking along the asymptotes

g/f = n{n + 1). Therefore, for the entire mode as a whole, both in the

‘ . o . -1 . .
region of positive and negativey we retain the same denotation
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(n, s),Pp"® , &°% « At f < s/n{n + 1) the curve lies in
nef n,f

the halfwplane }/_l “> 0, and at £ > s/nl{n + 1) - in half-plane

Y 1< 0. At £< 0 the whole curve lies entirely in the region

yt < oo,

The question regarding the number of zeros of the fundamental
function is highly impdrtant, and a lot here is not clear to the end.
In the action region of asymptotics at high y'"l the number of zeros
could be found. Thus, for asymptotics of the first type n > 0, the
number of zeros in function ﬂan,f (M) is equal to n ~ s, and for
function gsn,f (f} ) one unit higher, n - s + 1 ( we do not count
the zeros of these functions at the end of interval ). TFor asymptotics
of the second type, 1n < 0, the number of zeros in function gsn'f(f})
is squal to ‘n\ -5, and for function 'Lbsn,f ( M) it is expressed,
as will be shown in chapter 3, in a more composite way: it is equal
to ,nl - s + 1, when ln' - 8 is even, and l n\ - 85 ~ 1, when ‘!n{ - s

ig odd.

Can it be said, that the number df points of the fundamental
function is retained along the whole mode? The usual proof of retaining
the number of zeros in the fundamental function, based on the theorem of si
singleness for differential equatien of the second order, is complicated
by the existance of special points, firstly, at the ends of the segment,
secondly, in critical latitudes. The usual exﬁansion into series
according to ofderSjof(f} + 1 ) shows, that functions-d;, ¢ Thave at

the ends of segment [‘- X, l] have a special feature of the type (l—)ﬁa)s/a

But at £ = 4+ 1 the zero order of function rises by a unit, becoming



(69)

eqﬁal to (l_lH?)(s/2)+l. This indicates, that with positive f, varying and

passing through f = 1, the number of points changes by two., It is pre-
cisely with decreasing f that two points get added; it is not possible

for the two points to get lost, since from the asymptotics at high £ it
can be seen, that the extreme, nearest to ends of segment [-l, %}are the
; zeros, and not'd). Therefore, the*l’ radicals cannot leéve the segment.
As regards function $ , the zero order of this function at the ends of
segment is always the same, i.e. no zero can either enter, nor leave

through the ends of segment.

Another possibility of the changing number of points is connected
with existence of critical latitudes. At points }L: + f exist resolutions
W (M), which convert into zero jointly with their first derivatives.
Due to this with continuous variation of parameters the number of points
in functionwl’could change at once by two in each critical point, i.e. by
four. In exactly the same way zero number of function f can change at
once by‘four at points on axis F" in which conversion into zero occurs
of (s° / £2) - (1 —f}e)y( these points could be denoted as critical points
of the second order ), Beforehand the possibility cannot be eliminated
of such jump-like variation of the number of points in fundamental func-
tions. It is only possible to indicate those zones of parameter values,-
where it cannot take place. Thias is, firstly, the zone of negative Y
secondly, zone 52':>f§, and, thirdly, zone ’f]:>:1. In egch of these
cases there are no critical points either of the first,or isecond order.
It is obvious, that if there are no critical.points of the first order
( 1fl>>1 ), the‘number of points in function xp cannot change, and if
there are no points éf the second order ()f Z 0 or sa > fzy ), there
can be no change in the number of points in function « But it happens,

that in the first case the number
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of nodes in function & is also invariable, and in the second case of
function ) . Indeed, satisfies equation, which is obtained from system

( 2.3 )} by exclusion of b

(f - § a] 2 it [; * S }é =
LeP (1 - ) 2 o1 - o)
N M —i—i—-(l—‘u)}". ’“‘L

Assuming, that at the critical point of second order }L =}A‘,
where sa/fa- (1 - p2)7f converts into zaro,‘g and ﬁ-‘ are equal to zero,
in which case !f[ > 1, YWe multiply the above equation by é and intew

grate fromfx* to 1. After partial integration we'll have

1
| 1 - £ at __ spt ® i -
{ s° 2 ST TC R
P oS- - )Y #
£

1 - ;AE

1
=j (fa—ua)gadg
*
p L}
Here the left portion is negative, whereas the right positive,
2
vhich cannot be, In the same way aty < Oor s /f2 > Y » if at the
critical point of the first order M= f function 1) and its derivative
”ﬁj convert inte zero, then by multiplying eguation ( 2.2 ) by lb and

integrating from - f to £, we'll have
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L]

P )
l - }jd‘l)- 5’}\1) .I dP:

dpt f{1 - f‘*2>

: 52 2
Sf [fzﬂ - o9 Rix "

And here too the left and right portions are of different signs.
Even this incomplete information regarding the number of zeros will be
sufficient to confirm substantialiy in the next chapter disposition of

characteristic curves.

7« A note on expansion according to Hough's functions.

It is quite common in meteorclogy to use expansion of various
types of fields according to Legendre functionsJt would be more natural
in many cases to expand in accordance wiﬁh Hough's funections, specially
if they are properly tabulated. The basis for this type of expansion is
the theorem regarding completeness of the system of Hough's functions. To
be more exact, with all possible eigenvalues of ¥ is cémplete on the
segment [fl,l] 1. The proof of this theorem is net being given, since
it is in no way different from the usual proofs of completeness of funda-
mental functions system for the problem of Schturm-Liuville. For equation
( 2.2 ) the plotting is of Green's function,_i.e. the inverse integral operw
ater. The Green's function is cqﬁfﬁnuous, since it is plotted from conti-
nuous resolutions. For integral épérator the usual thecrems of the

completeness of fundamental functions hold true.

1 With § values, at which there are breaks of characteristic curves,

i.e. at s/f = n{n + 1), the attention for completeness should be paid
also to )/ = 0, corresponding to which is the fundawmental functions

g =Psn (P)c
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The only difference from the usually encountered eguations is the fact,
that among the eigenvalues there could be an infinite amount of positive,

as well as negative.

It was proved above, that negative values could exist only
for oscillations with period of less than half a day, i.e. at lf‘ > 1.
In the nexf chapter it will be shown, that at tfi = 1 there is virtually
an immediate appearance of all the negative eigenvalues, l.e. all the
characteristic curves, lying in the negative half-plane in Fige. 2.1 ,
proceed from one point !f‘ =1 on gyis ful. At First sight the
situation appears extremely strange. Assuming, tf\ decreases from
values higher than unit, to values lower than unit. Initiélly the
eigenvalues were only positive, and the corresponding fundamental functions
formed a complete system. With continuous variation of parameter {f\
these fundamental functions continuously vary and at a certain moment
it suddenly becomes necessary to add at once an infinite lot of new
functions in order to obtain a complete system of functions, i.e. the

0ld system very abruptly ceases to be complete.

The explanation of this event will be obtained by analyzing the
nature of fundamental functions at ‘f\ values, approximating unit. Je
demonstrate, that at \f\ s é little less than unit, there is formation
next to ends of segunent [T 1, l] of narrow zones, in which Jough's
functions ( aty > O ) lose the oscillation nature, i.e. become of
constant sign. With decreasing If! these zones widen out. At very
low lf‘ values the functions may oscillate in a very narrow zone around
the equator. An appearance of the norrowest non-oscillaticn zone is

enough for the system of functions to cease being complete; in fact it
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is quite aparent, that this system of functions cannot be used for
expansion, for instance, of functions, which differ from zero only in
the indicated non-oscillation wone. On the contrary, Hough's functions,
corresponding to Y <« 0, oscillate only in zones close to poles, i.e.
pracisely these are the best suited for expansion of functions, distinct

from zero in these zones. Thus, there are virtually two additional

systems of functions.

Let's check these assertions. Assuming there is some extreme
point of function.\;r. Then at this point, as follows from the Laplace

equation { 2.2 ), will be

2 2
(1—}*2)“1’}“:["% :E‘2+:;i + s - _r(fE_ P_E)Jd} .

£ -

1f, Y < 0O, the term in square brackets is positive at the
i .
segment [ - £, f‘]. Therefore, 11’ has the same sign, as xb « At the
extremum point the curve is directed with convexity to the axis of
abscissse., Therefore there could only be one extremum point ( at the
origin of coordinates ) and only one intersection with the axis { at
the same »lace ). Thus, at Y < 0O gegment [- £, fJ is the gegment

of non-osaillation of resolution,.

Assuming now, that ¥y > C. Let's analyée, inversely, additional
segment [f 1, ~ f} and [f, ;] « The two last terms in the square
brackets of the above relation are here positive. True, the first term
is negative. But if a narrover segment_is taken, then with sufficiently

high Y , i.e. for =211 lough's functions, starting from any, the last



(74)

term will be higher in absolute value and the whole formula will be
positive. If it is taken into account, that the resclution should
convert inte zaro at M=t 1, it is possible to come to conclusion,
that there will be no extremums, and therefore, no zeros. In the next
chapter will be given a more precise evaluation of the boundaries of

non-oscillation zone.

How to expand an arbitrary functien from Hough's funcﬁions? If
tables are made up of these functiéns, their expansion woﬁld be no more
difficult than from Legendre functions. But an approach could be made
to similar expansion also from expansion by Legendre functions, using.
expansion of Hough's function from the set Legendre functions. In other
words, there is a transition matrix from one orthogonal system to another.
Since such a matrix is orthogomal, the inverse matrix will be trans-
posed, i.e. obtained by replacement of lines by columns. For example
we are giving Table 2.1 of expansion factors of Hough's functions from
the set Legendre functions, calculated for a random case s = 3, f = 0,7681.
The Table gives }’_l values, corresponding to Hough functiens f = 0.781
and expansion factors of Hough's functions from the set Legendre functions

or vice c¢ersa -~ Legendre functions from Hough's functions. The matrix

is orthogonale.

Expansion accordingto Hough'sfunctions for positive and negative
has been used by Lindzen (1966,1967), Kato (1966) =znd Zhantuarov

{1967) in the theory of thermal diurnal tides in the atmosphere.
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TABLE:: 2,1

Expansion of Hough's functions from the set Lerendre

functions for the case of 5§ = 3, { = 0.781.

YR B B B B,
\Pg 0.0288 0.9356 -0.3462 0.0693 -0.0083 0.0006 0.0001  0.0000
4’2 0.0083 =0.2539 =0.5364 0.7024 =0.3742 0.1173 -0.0251  0.0041
*”2 C.0037 0.1272 0.3391 ~0.0907 ~0.5123 0.6435 ~0.3960 0.1533
ub24 -0.0037 0.1363  0.4864 .0.646? 0.4992 0.2589 0.0975 0.0279
qjg 0.0021 0.0795  0,2278 0.0221 -0.3613 0.0510 0.4700 =0.6070
q,fé. -0,001% -0,0725 ~0.2388 ~0.,2028 0.1251 0.4748 0.5859  0.4665
q;fl 0.0013 -0.0553 =-0.1635 -0.0430 0.2450 0.0928 ~0.3583  0.0501
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SUPPLEMENT TO CHAPTER 2.

Egquivalence of various forms of Laplace eguaticn .

of the theory of tides.

We demonstrate the previously formulated suggestion, that the
system (2.8), which is the issue of system {2.3), has no extraneous
eigenvalues of parameter s/f, except a whole number ones, at any Y -

For convenience we introduce the following denotations

(1 - Pa )

a =]
e

d}u f

D+

1l

[
J

2 4
_= - - R

The left portions of eguations (2.3), in which all terms are

transfeérred to the left, are denoted by A and B3
Az[(l-,ﬁ)-—q—nﬁf&]qj-(fa-ya)ﬁ
[(1— 23——-+-~&J€ [—““-(1- 2)yJ¢

In the same way also for equations ( 2.8 ) we take:

E:(L+..§_)§_y{(-%-+2p G- £

~ 2
'B:[L-«%—+-%—+(f2-1)y]\¥_
£
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"2‘ d-',
(GO

Tt is not difficult by direct estimate to be convinced, that

pa=3 (1480 (12708
~ 2 52 .
£

These identities permit to clarify the question regarding

equivalence of aystems ( 2.3 ) and ( 2.8 ), i.e. of systems

Tt is obvious, that from A==B==0 it follows, that EEEEE;EEEO,
i.e. that the system ( 2.8 ) is the issue of system ( 2.3 ). Assuming
now, inversely, ‘EEEEEEEED- I+ in this cage B==0, then also A=0,
i.c. the system ( 2.3 ) is met and the resolution is not extraneocus.

Assuming B%ﬁio. Then from ( 2.26 )} we have :

D+a=(1~£)B,
2
DB=__A-

Excluding A from here, we'll have

, 2
D+D _B=-(1-¢2")3 B,
£
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or otherwise

2

52
5 }B:O,
bl 1 - JI8

—
|~
o
I
-
o
H
|
+
fu
i

i.e. B satisfies Legendre equation. This may be in the case, if

2
5

R TR

i.e. 5/f =n +1or 5/f = - n. In this case B =P

A=~ T2 D - Pn = Cl Pn+l,

or A = 02 Pn-l .

Thus, if { 2.8 ) has resolutions, not meeting ( 2.3 ), this could only

be at
é} = + n{n >s n <Z -5 ).

Other extraneous resolutions there cannot be. Actually for us
only this ig important, but for completeness the question should also
have been clarified, as to whether fthe values é} = + n are actually
eigenvalues, i.e. vhether the system ( 2.8 ) always has a resolution
at the whole s/f and any'y "1. We wont try to prove it very p#ecisely,
and will restrict ourselves to the following, on the whole, quite con-

vincing reasoning. Assuming, for instance, g/f = n + 1. Then we have to

confirm the existence of the system's resclution
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— 2. 4 i 2 2 s
A:::[(l-—tu- )d—_}-;-m-s—fﬂj\p«(f -8 & =oypp

BE[“'HE’”@“*%&J?-{%- Fl*PZ)T]u{zﬂﬁ.

f

The corresponding lomogeneous system A==B==0, as was assumed,
does not have non-trivial resalutioné, therefore, according to the usﬁal
' alternative, they should be in the non-uniform system. These are the
extraneous resolutions. The only weak point in this reasoning is that

the correctness has not been proved of this alternative in the given

.

situation.

From the system of equations ( 2.8 } it is possible to obtain
one more form of Laplace equations. e substitute in the right portions

of this system the terms

Y'l-f’*f*" -<1-P2>€%J¢ and

Eiffi +<1-p2>dLP]$,

using eguations ( 2.3 ). We get system

(L+-—;.5—-)§ +\[(f2-/\,\2)_§ -2#\7\.&):0,
(L -2V +y (£2 -ff)li-ertﬁ = 0, (2.27)
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This system cannot be totally equivalent to system (2.3) due
to the followings. If £ at a given )f is eigenvalue of the systen
( 2.27 ), then ~f is also eigen Vaiue. {Actually, by denoting
gil = -3/1¥,1bl =& , we will find, that £ 14 1&)1 satisfy system
(2.27) at fl = -f1 )e At the same time system (2.3) does not possess
this pfoperﬁy. System (2.27) was obtained as an issue of system (2.3)y
therefore, any eigenvalue of system (2.3) is an eigenvalue of systen
{2.27)}, but not vice versa. Ye will demonstrste, that if £ is an
eigen value of system (2.27), then either f, or =~f 1is an eigenvalue of

system (2.3). Ve denote the left portions of equations (2.27) respect-

b el .
ively through A and B. Then, as it is not difficult te check,

Did = B ( 1 - p? )+(f’2 - £2) B,
-2
D_B A1 - P? ) - [ - (1~ F? )yJ Ao (2.28)
£

hssuming now that '3 , W at a given f satisfy system (2.27),
= : ‘
i.e. 4=B==0. Then either A== B==0, i.e. the system (2.3) is also

gatisfied, and f dis the eigen value of this system, or A and B
are the non-trivial resolutions of system (2.28), which in this case

converts into a system -

2 d M 2 2
[(1‘_P)“§?+—§FJ A = (f —H)B,

El-—pa)Tg——~%# JB =[£%--(1 -P?)y] A,

b

7 It should be mentioned, that resolutions, corresponding to f and -f,

have different evennes; if for one of themny even, and g odd, then for

the other it is vice-versa.
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which coincides with (2.3}, in which \b and é are substituted by A

and B, and f by =f, i.e. the system (2.3) in this case has eigen

value —f.

Finally, let's turn to system (2.9), used in Yaglom's work (1953).
e demonstrate that it is an issue of system (2.3}, uhere \if, QP and
TU are determined as described in para 3, by formulas (2.9¢), (2.10)

and (2.11). The left portion of equation (2.9¢) we convert, using formulas

(2.9¢),(2.10) and (2.11)

iﬂ@hi@?+pL@+(1-pz)%$=

=it (LY é+ 1D ) =i LYn & - YHTT)-

2 2 ]
_ _AifL [; - ;i{u) S%J* 188 - ifypit.

s

If we use relation

L(1 - 4 acfﬁr = (1= ?%I L =21,

then the preceding formulé will get converted into
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.2 - |
if" ] 8 2y 4

— {(L-p—f)ﬁ -y[(—-—-f + 2 =(1 - W) dF]«&J .

But this formula is egual to zero by force of equation (2.8),

which is an issue of equation (2.3). Therefore, equation (2.9a) has been

satisfied.

In order to obtain the second equation (2.9), we apply to both

portions of (2.11) operator ( 1 - pﬁ ) 1%: :

2, 4 a 1 2, d 2, ad
a-rH-sa-HEFa-gra-pdhH i

B if dpt dﬁ-’
or
2, a¥ a 1 2 2
(l—P)Tz%(l_JJ})F}%-'—J’_.S_(I-H)[L¢+ lfpa @J,
or

From (2.3)
2
2 _ 2 _ 5 2y d
Y- Ty @ pHd s Y s a4 g
(2.29)

Therefore,

3

G- - La-ph i w—u-ﬁ)%—ﬁ--

Substituting this term into the left portion of (2.9b), with

the use of proved formula LAl + & - yp T = 0. Ve get
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fa‘z(ﬂr+isé__b4ﬂ(§~3/ﬂ,c?r)- '—i:-'LLIi-p; -is@ + LW =
=f%f']{'+2'/u; ~3'ﬂ27r---§.m¢+L7t .

Using once more (2.29) ;

| 2
2 e L e 2pd ~a - pd) gg o A SVRTHE Y

- -
=JL[L+—§-2-———%—+Y(£2—1J\V—[(-?:——2)}}+
i

1 2>-m-—§}

The last formula is equal to zero due to the second of equations

{(2.8). Thus, the equation (2.9b) also happens to be fulfilled.
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Chapter - 3

CHARACTERISTIC QYSMPTOTIC CURVES OF LAPLACE'S EQUATION QF
THE THZEORY OF TIDES FOR LOW DYNANMICALLY EQUIVALSNY DEIPTHS.

1. WORKING SYSTEM OF EQUATIOHS 1

At the end of the previous chapter a problem was set to
curve

investigate the behavior of the characteristic asymptotiq/of'laizé's
equation of the theory of tides at }f'1k—a0 { or he~—>0). So far we
only know that at y‘floalong the curve f—» o0, In this chapter
formulas will be given for the first ierms of asmptotes. This
investigation is made in a separate chapter, since according to the
applied mathematical device it is highly distinct from the device of
the preceding chapter. The contents of this chapter are bfiefly
published in the author's articles (1966, 1968), supplement to result

H in Golitsin and Dikii article (1966).
Similar results were obtained by Longuet-Higgin (1968).

In the preceding chapter it was shown that the issue of system
(2.3), which is properly called the tidal laplace's equation is.a
_system of the fourth order (2.8), In deduction of asymptotes this
system, or more exactly, the first equation of the system, will play

the main role. We recall this equation.

(L+-§~)£ =¥'[&%-+2%i-(1-Pg)—%FJ¢’ (3.1)
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Yhere
2
d 2 ad s
L = (1_ )_...._._ - et——————
3 p M CyT 1"!“2

The first simplification, which could be made in connection
with the fact that the search is for asmptotes at ¥y +oc¢and f-+0,
is to disregard two in comparison with increasing term s/f. The

equation then will be

L+ -22¢ =y —FE— - (1 - u) —%,1'-]“’ (3.2)

Let us remember now the first of equations (2.3)

2 d B Ak 2
(1 - A - = (25 - ) & (3.3)
{‘ dt& f ]‘& }@
From (3.2) and (3.3) it follows

(L+-§-—)§=-y(f2—/¢2)§'

If we denote

B o= £ 4 =S | (3.4)

We will get

2
- g(“ (q_‘ua) gfu + Z 5 ; +y({u2—E)§=0. (3.5)

T-p

This is the equation that will now be the main one. WUWe have to study
variation of eigen values £ at unlimited increase of parameter )r .
This is a problem on asympiotic behavior of eigen values in

differential operator with low parameter ‘y'"1 at the senior derivative.
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It is easy to discover the analogy of this problem with the so called
quasiclassical approximation in gquantum mechanics, where we are

speaking of investigating Shredingerf{s equation.

-hdm + T (%) \L=E¢,
where U@x) is potential energy, B, total energy number, which has
to determined, when Planck's constant h is taken as a low parameter.
In our problem the potential energy is rﬁa. The differcnce between
Shredinger's equation and the equation (3.5) is that instead of the
simple operator ~—§;~—— we have operator L, vhich is included in
Legendere's equafgin. This results in a certain additional
complication, occurring in the presence of special points at the ends
of segment {-1,1). Further on it will be seen, that the indicated
difficulty could be gvercome by means of a simple method. Using
similarity of this problem to the problem of gquasiclassical
approximation, it is possible to apply the method called VKB-method,
developed in that case. We shall mainly follow this method in the
form suggested by Tsvaan{see Heding's book (1965) or the M.A. Evgrafov

and M.V. Fedoryuk article (1966%.

We shall analyse only the non-zonal case, s # 0, considering

that the zonal one was investigated by L.N. Sretenskii (1947).

First of all we make conversion of equation (3.4). We denote

= —%— (1 - féﬁﬁ—%7§~_ « Then instead of the one equation it is

possible to write a systems



g' = 1_8}“2 &
T

- 2
§'1=‘i"‘:§"‘2—§+ = p¢ o (p= g - E)s

We make another substitution of the sought for functions
A P
g = T 5 (z, +‘za), 51 = = (z, - z2,)+P(zy + 25),

where

_ T ow AA n? P
C?— . ] - 4 M) (1 -
Y

#2)

It is easy to check, that for values, Zgy 2, We will have a

syatem
&
2} = ____Jli_u__ 2y - | =5 — oy + ﬁt z, + E. (2, 4z ),
1 = ﬁ} & P
Zé:— ﬂﬂ-&%‘* '2..’2- & 5 + = és(Z*Z Y.
1 - b 2 (1 - ) U

(3.6)

Here & (fﬁ) - a certain known function, which shall not wirte

down, but will just mention, that it is regular everywhere, except

values e + 1 and pr= i':VT at which p converts into zerc. In
this case at the last points the feature has the order of P—5/2.

Let us explain the meaning of the implemented replacement of
variables, With accuracy up to residual term of about O 017 ,.) the

system (3.6) divides into two individual equations
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21 _'\Jr—:la_._. 2, - { Al -1 ] 25

1INV D 2 (1 _/ua) 5
zZ! = - ¥ Z, - ¢ + R Ze (3.7)
2 1 Gl 2 [ 2 (142) 5 2

Each of these integrates, without difficulty, and the solutions

obtained should approximate the solutions of the complete system (3.6).

Ca THE APPROXIMATING RIESOLUTIONS.

If we denote

4 2 4 2 '
..‘} 1 - 1. ML
X (p) = _...._5.&__ Yy N (@), K(p) = _Te'l/;:;(f.;)’

C?%)— arbitrary peoint), then (3.7) has a fundamental system of

solutions:

(1)

Z4 = X,], Zédl) = 0Oy 222) = 0, Zéa) =X

o
The atténtion is drawn to the circumstance that the approximating

system (3.7}, in distinction to complete system (3.6), has, besides

the points (M: + 1, also special pointsp = _-0;\/-‘ » Correspondingly,

for resolution (3.8) also these ﬁcints are special (branching points).

Thus, the regular function is approximated by ambiguous (Stokes') law.

Obviocusly such approximation cannot take place uniformly throughout

the whole range of variable M In order to find eigen values we

must integrate the equation from -1 to 1« In bhe process of integration

we must encounter points, in the vicinity of which the approximating
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regolution is useless. Here there are two ways for overcoming this

difficulty.

The first occurs in special vicinity investigation of points
f=+ VE uith the object of finding approximation, applicable in
these surroundings. The second way consists of the following: If
the aim is not to obtain asymptotes of fundamental functions, but
only of eigen values, then during the integration it is possible to
come out on to a complex plane along the variable Mand to by-pass
the special points M= i.*vﬁf'. This is the Tsvaan's method, which

we ghall use,

Let us investigate the behavior of functions (3.8) in the
complex plane, The selaction of point fAO ia not essential, since
with the variation of this point the resolution is multiplied by a
constant. It is convenient to take as fqy one of the two points
M= ‘JE- » These points, from the analogy with quantum mechanics,
we ghall call the turning points. We exclude from analysis certain
fixed surroundings of the ends of segment and origin of coordinates
and, therefore, alsc the turning points, which strive toward zero at .
Y —roo, frv0Q, In Figs 3.1 the thick lines show curves in plane ’

.Al
at which the function % + = 5 £ _2E d is purely imaginary.
- 1 =
il

vE =

Let us take function 7+ in the region I+II. So that the
funetion in this region would be unambiguous, we draw a section around

the branching point A= 1 &s ghown in the figure. For the separation

of the branch we shall agree to select the radical sigthlu?-E)(1- ﬁ?)
on the seghent E, 1, 1} as positive. Then, as it is easy to see,

function "b +(;Ufj implements conformable reflection of region I+II on
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the region, shown in figure 3.2a. In this figure letters, confined
within brackets denote points and lines, which are the images of

poiﬁts and lines denoted by the same letters in figure 3.7. Apparently,
outline acd was reflected into twice passed imaginary negative

semi-axis (line b reflects into positive semi-axis).

Fige 3«1 &% Plane of complex variable rﬁand of
Stocks' line,

- Fod an s
In the same way we analyse function 17 = S — df* -
Jg 1- 4~
. , 2 2 A -
The radical sig (f} - B)/(1 = 7)) on scgment [~ - Wfaz we take

as negative., This function reflects region TI4+III with section around

f*= -1 on to region, shown in figure 3.2b.

For us the important point now is one property of regions
in figure 3.2. Any two poiints of such a region could be jointed by
a curve, along which the real part of Re17ﬁ$resemts a monotonous

function. This property is quite obvious, In figure 3.2a one of
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such curves is shown by a dotted line. Passing on to prototypes,
it may be said, that any two points of region I+II or II+IIT could be

joined by a curve, along which Re 7 is monotonous.

We demonstrate an important lemma: if along a certain curve
Re‘q is monotonous and the curve is at finite distance from special
points, there are solutions of a complete system of equation (3.6),
which on this curve are shown as

z, = X, |1+ 0 (--——~1-—-—-)X y 2, = X,0 (_,__'!..__), (3.9

15 —
7Yy Y

and also resolutions shown as

1 1
z, = X,;0 ) I Z, = X2 [j A O (e )] . (3.10)
47 ' ‘J’a’

assuming, that 1 is one of the ends of a curve, which is mentioned
in the lemma's conditions. Taking system (3.6) as non-uniform and
taking the residual terms, containing ‘5, as the known right portions,
it will be possible to solve by the variation method of randoy
constants, since we know solutions of the corresponding uniform equatiom.

In this case we will have
P
o o~ e _1 o~ pad
2, () = X( M) +-]-§— X () I} 6(3)[%((}) +a(pr) X)) A,
: 1

o
’_f._ Xz(fu) f_,g J(F) [z,l (F\) + ZE(FJ} X? (F)d[ﬁs

(3.11)

Here the random constants are chosen so that at M= f*1 solution
coincides with that of the uniform system Z, = Xq, Z, = Os The

integration here is carried out along a curve having properties shown
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in condition of lemma. As f‘1 we take the end of the curve at which
Re*" has the lowest value. The (3.11) could be taken as a system of

integral equations, which has replaced the system of differential

eguations.
N
a) §
N\
i - ™
/” (‘fa\‘ §
7 t \ TN
{c) N
() Yo R
|
(@) 1 N
| N
N
6) :
( R
N
>
(el N
(VE) '-S
() (cl {11 (-1) %
T (-vE) N
N
N
N L

N

N

~

FPig. 3«2 - Conformable reflection of ©plane, given

by functions * ()fa] and o - (fx)lﬁj

We shall resolve this system by expanding functions into series

according to orders of 1/ Y i.e¢. assuming that



o o
2, =Z @ 2 2 ey s D =g,

For the factors of a series we get recurrent relations

(0)
2z, = X1,

M

Zéo) = 0

o

i)

M

Now it is easy to obtain evaluation from induction
lzq(n)l <e I,

2] < )

tn 2

2{%) x,l((u)t}s 3‘#’[ (2= (&) + &PV c@] x5 G af,
1

vhere as constant K it is possible to take product 2 max,f G‘I by

length of integration curve., Ineed, at n = 0, this evaluation,

oBviously, holds true, If it holds true for n - 1, then

1] <2 e (8] ] f]d?lﬂ“’f}%
)(n)l <2 max }r—l Y- Rem () X

g2 S eaﬁ Re*’(f»t) }a;‘é

I

(3.12)

™ = - () S 8(,«9[ 2= (T e afmY (F)] G ah
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' 2
"—"—i,ﬁ— Y7 Re ¢ p) g1 = " ]x,l]

In the last case we had to use the fact that Re 7 (;) < ReY} S,u),
i.e., the property of monotony indicated in the lemma condition. From
the evaluation obtained it follows, that the series (3.12) absolutely
converge with sufficiently hiéh Y and that there is actually (3.9).
The second half of assertion, pertaining to formula (3.10) is proved
gimilarly, but the integration here should be done from the end of

the curve, where Re ¥] has the highest value.

Tnasmuch as each solution of the system is a linear combination
of two linearly independent solutions, for instance, of those the
existence of which is asserted by the proved lemma, any solution of

system (3.6) could be written as

1 1

1—c1x1 [++ o ( = )]+c2x20( 7 },
9 1

C,lX,IO (——ﬁ—) + caxa [1 + 0 ( r“{ )}.

Returning to initial variables, it is possible to come to the

]
|

2,

conclusion, that any solution of § could be written on our curve as

§={C1_(Y)x1 [1*‘0(.{.:7 )]+c2(1f)x2 [1+o(_\h1? ﬂk 1:‘12

§~;{c?(1 X, (Y0 ) + Gy (¥) X, (74 2 )}YT—-_—j“—é- (3.13)

" N.B. It is easy to see, that concepts (3.9) and (3.10) hold
true not only on some fixed curve, but throughout the region, each
two points of which could be joined by a curve having the above

property of monotony, atleast, if we restrict ourselves to some
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terminal portion of thig region and exclude the surroundings of

special pointse.

Se CONJUGATION OF ASYMPTOTIC FORMULAS IN A COMPLEX PLANE :

Assuming now that gé-is the proper solution of our problen, i.e.,
solution of equation (3.5), satisfying limiting conditions at M= + 1,
the ends of segment are single valued eguation, therefore, § (f#) is
analytical function of a complex variable Mo In accordance with the
facts proved, in region I + II, except the above indicated

surroundings, é admits approximation.

e

S - &) (W - E)] -1/ [cx,( P VY e
| +C, (y) e -ﬁﬂq + (ﬂ)] . | (3.18)

What can be said regarding factors 01 and CZ Thege should be
determined by boundary conditions &= 0 at M= 1. But, unfortunately,
the asymptotes do not pertain to surroundings of point fA: 1. However,
this difficulty could be overcome without the search for asymptoes,
suitable for surroundings of point p= 1y First of all for the
solution which we are speaking about, throughout the segment [:"V%QIZ

N
there should be g'/’g & 0. This follows from equation (5.5)ifor
function i, if it is re-written as

2

2y oan - CoEt o4 5 .y 2 _ N
S LR R an A A
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If at a certain point of segment ;ﬂand 5 had similar signs, for
instance positive, then, since §(1) = 0, a point would have been
found on segment Eﬂ“ﬁ:"{*]; of maximum, at which £' = O, &= Os But
in the equation just wiritten we obtain at this point ,§" > 0, which

cannot be at maxinmum point.

On segment ZN_—E,IZ the first of exponent in formula (3.14)
increases with the increase of ¥, whereas the second decreasess In
order to fulfill the condition £'/Z > 0 at any ), the increasing
exponent should be suppressed at the cost of the factor, i.es, the
factér with increasing componenf should be infinitely low in comparison
with the factor with attenuating exponent, i.e., C, (y)/ca(y)—a-o,
in which case the striving to zero is exponential. At segment 23["3?: 17
the main term should be real. Therefore, C2 is a2 real number with

accuracy atleast to the term, which strives toward zero in comparison

with CE'

In exactly the same way it is possible to write approximation

formula in the region III + II (see figure 3.1).

5,__,4 [d,](x) e-ﬁ."?“(ﬁ) + da('[)e'ﬁ’?'(/-l )]
’{Eﬁ - P?) (fia - BE)

Once again the exponent increasing on segment E}1, ~Y E 7 should be

(3.15)

suppressed, l.e., dq(}')/da(}’)wro. And here also d, should be real,

2

Agymptoéic forrmulas (3.,14) and (3,15) have common region of
application sector 1I. Here there should be coincidence of atleast

the main terms of these asymptotic expansionse. Which are the main
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|

terms? Those which were getting attenuated in sectors I and III,
inecrease in sector II with thd )ﬂ increase, Morcover their factors
02 and d2

Therefore, it is precisely these terms that have to be equated one to

L 5\[ G

y &6 we saw, are greater than the factors of other terns.

the other:

il

Moreover, it should be taken inte account that nultipliers

1/ 'b/ (1 = ff) (/A2 - E), which stand to the left and right, are equal
to cach other in absolute value, but are distinct in phase, l.e., F
different branches of radicals have to be taken. In the left portion

of the equation we take the branch which is real and positive at “VET‘Q

M <1, and in the right that which is real and positive at -1 <« M < -

A E . Ve obtain

VI 5
% - E
-i7/2 c, Tr J:___ ™ 2 4
e T = e Y E - M
2

The radical under the sign of integral in the exponent is purely

imaginary. We have



" i P

2
-y E 1 -/n
CE

a

Taking from here the imaginary part and considering the reality

= d/u)

e

of factors C and dZ' we get

! '/“

where p is a certain whole number. This is the sought for relation

between Yy and E. It is completely analogical to Bohr's quantization
rule for Shredinger's eguation of quantum mechanies in quasiclassical

approximation, for low values of Planck's oonstant he

From the given demonstration it is easily discernible, that
argument variation of function ;,, with by-pass along the outline in

the top semi-plane from some point on segmentl‘# ’ 1] to some

point on segment [}1! - ] is equal tdﬁf— J;,:v (B -/ud)/(1/nd)%ﬂ -'EE

i.e., according to formula {(3.16), to 2 p. Therefore, with complete
by-pass in the upper and lower half-plane the argument variation is
equivalent to 2Hpe. In other words number p is interpreted as a
number of zeros of function inside the outline, which by-pass segment
z;'vi}ﬁfglz. Most probaly all theée zeros lie on this segment., But

even without knewing it, we may hence draw some conclusions from the
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. o =
proven fact regarding conjugation of asynptotes at high and low Y -
It is obvious, with even p function.'gis even, since it has an even

nunber of zerecs, and vice-versa.

4, 0 BRANCHES OF ASYMPTOTES

Asymptotes in form (3.16) are not very convenient for use, as
they contain an integral, not calculated in elewmentary function
(elliptical). However, the formula could be appfeciably simplified,
if the fact is noted, that ot of )’—bao, according to this formulsa,
it follows, that E=>0 (for one and the same p, i.e,, for one and the
same mode), In this case the integration interval gebs contracted and
in denoninator of integrand it is possible to discard 2 as opposed
te unit, which will not affect the main term of the asymptotes. In
this way there is prmactically always a very high accuracy; it could
have been increased, if desired, by expanding the integral according
orders of I and taking two expansion terms. But now the integral is

calculated, and we havs

VY E=2p+ 1. (317)

Now we recall, what is E. We find

z/f? (}2 + ?a ) = 2p + 1. ‘ (3.18)

This equation could be solved as guadrant in relation to™y Yr .
We will get two radicals, i.e., two branches of solution. Since f s O,
the terms obtained could be expanded according to orders of f. Thus,

we arrive at the formula
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f%r 1/%n./2p + 1 - “§§£I*T (3.19)

for the first branch of the solution and formula -

1/2 . s

Y
for the second branch., In formula (3.19) we have taken two terms
of expansion according to orders of f, and in formula (3.20) only one.

As shown by the calculation experience, this is found to be quite

sufficient,.

We see that according to behavior at low y -1 the characteristic
curves also get divided into two groups with curves of first order on
the left (atllow )’_1) and the curves of the second order on the
right. The question remains open, as to whether division into curves
of first and second order on the left at low }’—1 corresponds to
similar division on the right at high }'_T. In other words, whether
the curve of the first order on the left is the same one on the right
and vice versea. The answer to this question cannot be obtained from a
single asymptote. It depends to a considerable extent on the behavior
of solutions in the intermediate zone, between the asymptotes. Let us
take a look on the results of numerical calculations, shown in figure
2.5+ We know that the continuous lines here show characteristic curves,
calculated on electronic computer, and the short dotted lines
asymptotes on the right at high ) -1. Long dashes show curves, depicted
by equations (3.19) and (3.20). The figures show, that the asymptotic
formulas give a very good approxinations. At considerable extention

the asymptotic curves practically merge with the exact curves. In
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this case the activity zZone of asymptotes at high 3"1 almost merges
with their activity zone at low f'_1. We may say, that asymptotic
formzlas alone are sufficient to reconstruct satisfactorily the shape
of curve throughout its extent. Further on we discover, that there

ig no reciprocal unambiguous correspondence between the classes of
curves on the right and left. In all the calculated examples at & =
1y 2, 3, there is the same occurrence: the bottom curve of the second
order on the right {at n = s in formula (2.21) is at the same time
the top one of the first order curves on the left ‘(at p = 0 in formula
(3.19)3 . The remaining curves pertain to sinilar classes both on the
left and right. In para 7 it will be shown, that this is in genéral

conformity to principle.

It would be of interest also to write down formulas for periods
in all the asymptotic c¢ases in dimensional form. For asymptotes at
high y_q for the curves of the first and second order respectively

we will have

T~—§-—E§—yn(n+1) , Teonlnr ) (3.29)

V—gh— 2 s

For asymptotes at Zow y =1 we have

i [ 2a
Yep + 1 Ojﬂ gh *f gh

for curves of the first and correspondingly second order. These
formulas realize all three possibilities of the plotting of parameter,

having dimension of time, from the values a, (J and }/ gh
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90°

Fige3e3e. - Fundamental functions of the Laplace's tidal
equation 1) }/_1=1/‘1O, 2) }’"1=‘]/“IEOO,
3) asymptotics ?‘_1__5. OF

Simultaneously with eigen f values we calculate also the
fundamental functions 0%1 idal equation, i.e. Hough's function. At
high );"1, as wWwe know, these functions are asymptotically equal to
adjoined Legendre functions (for asymptotes of the first order) or
linear combination of two such functions (for asymptotes of the second
order). With decrease of )J-1 Hough's functions become dombinations

of a high number of adjoined Legendre functions and their form becomes
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more complex. Plotted in figure 3.3. are the curves of calculated
Hough's functions of the second order for some s and n. We see, that
at }’-1=1/1O the asymptotes are still accurate, whereas at }’"1m1/1200
the curves acquire a unique nature -~ the whole oscillation amplitude

18 concentrated near the equator, close totLL= 0, whereas in the =zones
of moderate and high latitudes practically turns into zero. Such
behavior of natural oscillations is easily expiained. Outgide the
turning points the solution exponentially dies-out. The turning points
are deternined by formula A= ;fffﬁr— cn‘fL= if{ 2 & s/faz , which
for asymptotes of the second order could be written also as#L;ﬁL_ S/TY «
For instance, for s = 1, ¥ = 1200, f = 1/100 we shall have =+ 0.29.
OCutside the interval O.29~<Lf* < 0.29 the resolution exponentially

dies oute

In para 7 of chapter 2 it was indicated, that at f 1 there is
appearance, at the ends of segment ﬂ;1, 1&, of zones where the solution
of‘ﬂb‘(exact) cannot oscillate. Using the asyuptotes obtained we can
implement a more exact evaluation of the width of these zones. For
instance, it is easy to check that for asymptotes both of the first
and second order {in the last case only at p B-0) the factor in front
of «§y in the right portion of (2.25) is positive at (1 + € )7/T‘</u<1,
where & is random positive number., Therefore, in this interval there

are no zeros of function 1&.

The fundarmental functions at high )’_1 are ugsed in the theory

of diurnal tides, (see Haurwitz, 1965),



- 104 -

i

5. CORRECTNESS CF CARRIED OUT APPROXIMATION.
ADDITIONAL WAVE, PROPAGATING BASTWARD:

At the start of our discussion we made one, although very
plausible, but not very well-founded, assumption according to which
the role of term 2 }Ffw in equation (3.1) is imsignificant so that
it could be disregarded. As a result we obtained equation (3.5),
to which we applied the VKB-approximation technique. ‘Investigation'
should have been made of the validi%y of this first simplification,
by comparing the exact aolutions.of equation (3.5) and the initial
Laplace system (2.3). U;}ortunately, it cannot be done very exactly.
It is only possible to state certain reasons,which could be
considered as eurystic in regard to validity of the first approximation.
We turn our attention to this question now, because the answer is
not quite insignificant. There is one exceptional case; when the
resolution of equation (3.5) does not correspond to any solution
of exact system and, vice-versa, the exact system has a solutoen
undepictable by equation (3.5). In the present paragraph we shall

name as approximating solution that of equation (3.5), aid exact--.u:nt

sotutioh of system (2.32:

It should be mentioned that even if it is assumed that
the approximating solution é; is uniformly similar, jointly with
derivative to exact resolution, it, nevertheless, will not have one
fine structural property of this solution. HNamely, at the critical
points of the second order, i.e., at fhose points on axis hwhere'f
the term (Sa,/"f 2y - (1 -flz)'Y_ converts into zero, conversicjm into \
zero should happen also to linear combination (1 —,§2)€‘ + 8 ) § /% ,i
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as follows from the second equation of system (2.3). But the

asymptotic solution does not meet this condition. We mention,

that for asymptotes of second order at [~ 0, i.e., f 21;4 52/(2p + 1)2,
E;itical points of the analysed type do not exist at all. VYhereas

for asymptotes of the first order, i.e, fuf:‘uf (2p + 1)2, these points .
are present near the ends of segment [- 1, 1] and at{;amthey strive
foward the ends. This fineness becomes important if from function s
determined from equation (3.5), we wish to find “w‘ by means of the
second equation (2.3). At the critical point ¥ will be found to

be infinite.

To evaluate, to some extent, the effect of discarded term
E'ﬂf? wonld be possible with the use of perturbation theory and
considering this term as perturbation. If the first correction is
found to be asymptotically low, we have some grounds to assume our
approximation as justificd. Keeping in view the above indicated
difficulty, bound with the existence of critical points near the
ends of segment i} T, 1] , we shall slightly narrow down this
segment, taking instead [? 1+&, 1= E] , where the & will
be fixed. At the ends of the segment we set zero conditions. It
may be assumed that this substitution should not be felt appreciably,
at least the main term should be cbtained correct, since our
solutions quickly die-~out at the ends of the segment, and the
higher ‘J— is, the quicker is the vanishing. We must demonstrate now,
fhat‘if at ¢—4 &  there is a set.of resolutions of approximating
egquation (3.5), for which fafr-d 52/ (2p+1)2, p > Qor

L 2 .
f Y}hu (2p+1)°, 1 :% 0, there is also the corresponding set of
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resolutions of the exact system; moreover, f (“{ ) being asymptotically
similar to this set for exact resolution, and vice-versa, each

resolutions set for exact system in these conditions corresponds to
the set of near resolutions of approximeting equation,

If in equation (3.1) no terms are disregarded, thezn with

the same conversions, as in para 1, instead of (3.5) we shall have

LE +"T (E-)la)é =2)1T‘-P.

The right portion we estimate as perturbance, assuming,
that the unperturbed resolution, which we shall mark by index zero,

meets the previous equation, where there was no additionaliterm
: 2 {; _
Lfo'ﬂ{ (Eo /1) o = O

Expanding ascc¢ording to the orders of low parameter, which
could provisionally be set in front of perturbing term, we shall have

for the first order terms

LC,, + (EO.—/JE)C,I +\‘“Elé 022)17"‘-‘: o'l‘

Multiplying the first equation by é 19 the second by f 0!
subtracting and integrating, we shall
-

é S 1{W°éod}

1 P

[ (2a ,

-1 +
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~ 2 é (f $1/0 (252 - (1 - 22
Here Wo-[(’l-)l) o = B M o ]/ (s“/4°) - (1 f)f
The term (52/f2) - (1 -)12)“{ is evaluated from bottom as ¢ ‘Y' on

our assumptions regarding the bond of f and Yy . Now we must estimate
individually two terms

1

é
- 2
g rO-p >fofod

)1’
-4 .3.. 1-)] T

1 =
2oGe

52 2
-1+ £ f[—é - (1 - p )T:[

f

8

d).l-

In the first of theseé o E o has to be substituted by
( é :9;)’é and integrated by parts. Without difficulty we get estimate

h)
0 (- 3/2)2 In the second we get initially estimate

Functioné o dies-out as exp. (-7 )1),{[ This follows
from asymptotic formula (3.14)] » Therefore, this entire term is
estimated as O( Y ~2), Thus, we have B, = 0 (~ “3/2), whereas

E=0 ( IY _}é). The correction is asymptotically low.
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Thus, we have grounds for assumption, that the asymptotic
solutions, which we have obtained actually correspond to the true
resolutions in every case, except, perhaps, p = O for waves of the

second order, where the above reasoning is not applicable.

Now let us pay attention to the fact that we have obtained
our asymptotes, using equation (3.1), i.e., the first of system (2.8)
equations. But the second equation could have been used just as
well and the same carried out, i.e., the two discarded as against

¢ 8/f. The result would have been equation

G-DYT G- DY <o

instead of (3.5)., The difference is that instead of function(f

we have \F , and £ is included with an epposite sign. Therefore,
if in relation to this equation the same asymptotic theory is
developed, we will obtain the same formulas for asymptotes of the
first order (at least in the main term, not dependent on sign f),
but only now at even p the even functions will be not /9 ’ butcf P
For asymptotes of the second order we will get instead of (3.20)
formulas with opposite sign f'{' ﬁa«—3r~5(2p+1). But all these
asymptotic solutions cannot be near the exact solutions, i.e.

cannot have meaning, except, perhaps, asymptotic solution of second

order at P = O’ ioeq;

NS S
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‘because in other cases, as we have defined, the exact resolution

is similar to solutions of equation (3.5), i.e., our old asymptotic
formulas, which contradict new formulas, still hold true. In para 7
we will see, that for branch f ﬁ'%,*uu + 8 the correct sign is

actually the minus.

We make one more comment regarding the number of zeros of
.ihe exact and approximating solutions Cf » 411 zeros of approximating
solution (f lie, as we know, on the narrow segmentEﬁE:' 1[5_], which
contracts toward zero at)ﬁ;-;aa. If the approximating solution is
~uniformly close to the exact, then in the vicinity of its zeros should
iie zeros of the exact solution and in the same quantity. But besides
this, in exact solution zeros may appear also within the surroundings
of the ends of the segment [— 1, 1] « It is guite clear that in the
case of f <: O the exact solution has two additional zeros. Whereas,
in the case of f > O these zeros cannot be present and, therefore,
.~the number of zeros in exact and approximating solution is the same.
In fact, at the end of preceding paragraph we remarked, that outside
the interval{ -2 ~] B, 2y E | function ¥ (the exact) does not
convert into zero. Assuming, that in interval [_2 ’JE: 1] the
~sign of ¥ will be positive, at,p = 2 + E the right portion of the

equation {(2.3)

(1 - )12)&; +-E§&= (;-) - (1 -)12)]‘1’

is negative, and at ’p = 1 positive. If it is taken that the exact
solution approximates smoothly at P= 2 VE, then at this point

function é; y and its derivative have different signs. These signs
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could only be:é d o,(f > 0. Butvid-the immediate vicinity of
P = 1 1‘.’:.1:1::1::1«311@E , monotonuously strive toward zero,é and é ’
also have different signs: é e O,éi 0. Therefore, functioncf
‘¢hanges sign at segment‘: 2 “VE: 1] . Demonstration of the fact
that there cannot be more than one zero, is easily done by means
of similar reasoning with additional consideration, that between
two zeros of function (f there has to be either Y zero (which
is not presént here), or a critical point of the second order.
The proof is simple, as we omit it. The proff of the fact, that
at £ > O there are no é zeros on segment [2 ][i: {] is that
at O 4\ f & 1 the extreme, nearest to ends, are the ¥ zeros,
and not é ., which ensues from the reasoning of para 6 in

Chapter 2.

6. NEGATIVE VALUES OF EQUIVALENT DEPTH:

We shall specially pause on one more case, which has
lately attracted the attention of some investigators: the case of
négative values of equivalent depth h or parameter Y'. We know,
that tﬁese values could only be at f < 1 and that with incresse

" of f-1 the curves, one by one, sSeparate and move away to horizontal
asymptotes (in the case of positive f), to which already in positive
| half-plane“f<c O arrive the curves of second order (see Fig: 2-1, 2-2).
’ But s¢ far we do not know, whence these curves ensue, from which |
1 points on the axis of ordinates. Perhaps the whole bunch of these
| curves emerges from one point f = 1, which at a glance at the drawing
i seems quite probable, and, perhaps, each curve emerges from its own
:point on the axis of ordinates. In other words, the behavior of these

curves should be investigated at low negative _V--1 vralues,
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Further on, it will be proved that the characteristic
curves virtually emerge from one point f =1 at Y -1 - 0. This
only requires to prove, that an infinite number of curves emerges
from this point. If in these conditions at least one qurve,had
emerged from another point on the axis of ordinates, it would
have been interesecting with some of the curves, emerging from point
f = 1, since the curves can accumulate only toward the axis of
ordinates, and there cannot be intersection. Hence we shall
analyse only f values close to unity and plot multiple of curves,

striving toward point f = 1 at 'Y'-1~—$‘O.

Asymptotes, obtained in the presceding paragravh, and the
methods of obtaining them are inapplicable in the present case, since
there we used not only the lowness of 'f “1, but also the lowness of f,
which is not present here. It will be necessary to obtain & new working

system of equations for the use of VKB-method.

é = ‘{—_E:E:gf (z, = 2,} +® (2, + z.), (3.23)
= g "%+ G ety + 2,
2, [, ‘
pe o gt e b SR (2 (-3 h]

It is easy to check that instead of system (2.,3) we shall

where

have in these variables the following system:
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+ 22) (3.24)

where 5‘ is a certain function universally regular, except at points

M=+ 1and M=+ f. The top signs pertain to equation for z%‘and

the bottom ones to equation for zé. The role of this system is

the same as of system (3.6), it separates (with accuracy up to

residual term of about L ) into two individual equations, each
T

of which integrates without difficulty. Thus, system (3.24) is

approximated by system

Zi,2= ¢ H #51,2 - (;(‘1%?; Epl> “1,2

resolutions of which

N
il
-
1
o
[1:]
1
-<'i,
Q.--—-—\,\k
Hy 7
N
k
N
[N
“F
o]
1
L

4 — Y
z, = 0, z =1/--'-{--_-'——/L--L--:-------e“"'r:f~ gfa—'»&ad)l

2 " Jfa- AT 1_)’2

We shall name the VKB-solutions. In old variables the VEB-solutions

have the following appearance:
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(the residual terms are not written).

It has to be investigated, in which zone of complex plane

the VKB-solutions approximate solutions of a complete system. The

 lemma, similar to the one proved above holds true even here: any

resolution could be approximated by linear combination of

VEB=-solutions

(3.25)

.in the zone of complex variable/u, where ényﬁfwo points could bhe
joined by an outline, along which Re "] (‘q: 51 - £":-3'-'2 d/.1> is
1 =
2

" meonotonous.

Since we are analysing a case of f, near to unity, it is
possible to encircle both the points f and the unity by & common fixed
surrounding, into which we shall not enter. Hence we shall examine
separately cases of even and odd solutions, which meet at’p = 0

boundary conditions

‘It_)'.—.o and&%ﬁ: 0 (3~26)
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respectively. Therefore, the analysis will be carried out only of
special points/p = f,/p = 1. In Fig: 3-4 thick lines show curves,

at which Re %) = 0, i.e., the Stockes' lines. If a cut is made

along an outline, shown in Fig: 3-4 by an arrow, the plane/p will

"be reflected throughout plane (Fig: 3.5), cut along a negative
imaginary semiaxis (the sign of radical was selected so that at

realjp & f the radical is positive, and ¥ , therefore, is negative).
From what has been said above it is c¢lear that point’p= 0 could be
joined with point/po, where}yo is random fixed point, 1yi?g ta the

right of point/u = 1, by an ocutline, along which the Re'q is
monotonuous. This outline is shown in the figure by a dotted line.

’;On this outline the 1b solution is approximated by VKB-solution.

The gquestion arises, how to estimate the boundary condition
J’at/p = 1. In the vicinity of this point the VKB-solutions are
ineffective. Here we are assisted by the reasoning, that boundary
condition conversions ofn into zero at )u = 1 signifies also,

that the solution at this point is a product (1 -/pz)s/z by analytical
function, in distinction from other solutions, which have at this ;
point logarithmic branching. Thgs, if analysis is made of the real

part of the solutionEO, 11]then with even value of s it will be

' real even at)x ™ 1, and with odd value of 8 purely imaginary at)x > 1
‘For the other solutions, not meeting boundary conditions, this is

" not s0.
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Fig: 3-4 - Plane of composite variable):.
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> {iol
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3 (f

Fig: 3-5 =~ Conformable reflection of/u,
given by function (/A).

Thus, the boundary condition at/u = 1 is substituted by

+  the following: with even & the sclution should be real at} > 1, and

with odd s purely imaginary.

We denote for simplicity
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Let us analyse individually the cases of even and odd
golutions of \Lﬂ » Case 1 even solutions of W@f. Due to boundary

condition at zero (3-26) our VKB-approximation (3.25) should have
the following appearance

£
bofpen oo

i
or

f

qp wﬁ ch! 'f’d)x+

[+ I N Y

At/x = Py it gives

f’f
;
\?P ()1 )N“[ﬁ ch% E Pd}x + }Pd}l +§z“i'd)1.1E
v A £
c £ 1

f
Integrals & and
o

are real and integral g purely
1 f

purely imaginary. The formula just written could be changed,

separating the real and imaginary parts,
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1

Pd)l] cos § | o} ap -

f

O

O teneo™™y Hh

b
\\!()lo)x_{ﬁ{ch[ Pd)l+§

1

Pd)l] sin gl!pg d)l}-

f

]

e ey
i L

o

.
ish'ipd)x+§
1

o\,

Now we shall use the second boundary condition.
1. Assuming & is even, then AP (/“o) should be real.

This gives

1
sin S gp!"d)z = 0.

£
or
1
( 2 g2
'\J’.’{ j -&—21 d)l = k.
£ s
2a Assume s is odd. Then'\'P ()10) - purely imaginary
1
ofo]] g‘pt d/u=0,
f
or
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Case II ~ 044 resoclutions of ?k?. The asymptqtgq here

will be (

hence

Mo
( (
l‘J()lo) V7 b de)x-n- pd/.l-i-j pap |-
o] f 1
By separating fhe real and imaginary parts we‘havq
f ' 1
o
q’”‘ﬁ"’ﬁ{“[j?‘")‘*j pd/l] cos g‘p\ d)x‘-
o] 1 bis

f‘f /ﬂo " 1 \
_ich%_Spd/u-t-S +pd}1jsin j.h’\ d}l}.
1 4 ‘

0

1. Agsuming s is even, then
. 1 .
sin g]p\ d):--O,

or
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2. Assuming 8 is odd, then,

et @ m

1
€
%
5 )

or

d/.l ’T(k + ?)o

In case II the same formula was obtained, as in case I.

Thus, with even s

1
[ 2 21 | ]
| P £~ ;
. _)] |
f

With odd s )

1 .
r 2.2

qﬁ?j“‘_____é): )ld)az'ﬂ"(k+—;-) (3-28)
f - .

Formulas (3.27) and (3.28) are the analogues of Mguantization

law" in our case.

It should be mentioned that the formulas could be highly

simplified, using the fact that at]{_+-oa s it follows that f'- 4. Then

z”a prE gt p-t
1-/*"‘" TR TR TR e
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By carrying out this simplification we get an integral,

elementally calculable. We will have:

for even s

+-y « ] £) ~ 2k,

for 0Odd s

"\/-Y (1 - £) ~2k + 1,

or in every case

—V...Y (1 = £) ~"z « b, (3"29)

where p is & whole positive number, having the same parity, as s.

We get somewhat more accurate result, substituting

+ f ) '
-\i)‘ _ - £ -1 _‘/ £-1 £ -1
- 1+ 3 +/n;:{ Tyt 2 (f + 717 °

1 +)u

then
- 1 - f .
-y [1 AR N (3.30)

8 : . .
At 3 < 0 every reasoning remains in force, if f is

substituted by f
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We make a note of the following interesting circumstance.
At each p, having the same parity as &, there are, as we have seen,
two solutions of \P even and odd. It does not mean, of course, that
the two solutions, even and odd, correspond to the same values of
parameters f, 7’ , since there cannot be a multiple 5pectium. . Here
there are simply two very near eigen values, moreover, thias fine
structure differs only in scme follouing terms of asymptotes,
whereas, in the first term it is not visible. Fig: 3.6 shows
asymptotic curves calculated from (3-30) for s = 2. Some of the
values calculated on electronic computer for even solutions are
shown by cireles and for odd resolutions by crosses. We can actually
see that each branch of asymptotes pertains to characteristic curves

of even and odd type.

What does the number of zeros in fundamental function sgual
to? We have obtained asymptotes of eigen values, but not of fundamental
functions, to be more exact, we obtained asymptotes of fundamental
functions in & complex plane, but not on a real axis. Nevertheless,
the number of zeros of the fundamental function on real axis could be
found, by using the principle of the argument. For this we should
follow the number of turns, completed byi¥(}ﬂ) with the movement of)z
along the closed circuit, encompassing segment {?, 11 , on which can only
1ie all the radicals {except the radical/u = 0 for odd solutions).

With the movement in the top half-plane from)I tﬁb to P = 0, or, better

to say, up to cgftain low positive u value, the change of argument is
equal to }EY SU( /12 - fa)/('!—)la) d)l- as it follows from the
¥
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reasoning carried out. Therefore, for even s this term, according to

1 .
(3.27), is equal to 9 k, and for odd s it is  (k + ??), according to
(3.28). With total by-pass around the segment [I, 1] this variation

is double: it is 2 k = 9 p at even s and 2 Wk + T" = N p at o0dd s,

Fig: 3-6. - Asymptotes of characteristic
curves at Y—1F.+ 0.

Now we add symmetrically disposed zercs on segment [:- Ty=- {;]
and/u = 0 for the odd solutions, and will also take into accouﬁt that |
zeros at the ends, atlp =+ 17, add to the ?ariation ¢f argument quantity
P~—-&- each. Hence we determine the folloﬁing,;irrespective of whether
for even or odd & the number of zeros is p ~ s for evén solutions and’

p - 8 +1 odd resolutions. We denote the number of zeros by N. Let us
remember denotation introduced by us for wave type modes. The
fundamental functions were denoted by'\bs (/P ), where for modes

of second order {(and they can only be innéie region of negative '1)

the index n is negative.
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Comparison of values of parameter p, number n and the

number of zeros N in function {b is given in the following table:

8 8 ] =S -
Mode & 4 o« » o o » ‘v-ﬂ‘f ) w-s-‘l,f \\D_S_E'f ' *ﬂs_'}’f . s »

Numbeér n . o« » « « =8 5= -5=-2 “B=3 . o' s
P o« o o s & 38 5 5+2 s+2 *» & e
Number of geros N ., ] 0 3 2
We see, that for even solutions n = - p -« 1, and for odd ones

n == p. ForevenN:‘n‘-5—‘1,andforoddN=\n‘-s+‘l.

7. CONJUGATION OF ASYMPTOTES AT HIGH AND LOW: —1:

We pause initially on the case f 0, i.e., on the case
of waves, propagating east to west. We have asymptotes ét high
and low Y'”1. In either case all modes are divided into two orde¥s, inte
bunches., The question arises, how does the asymptotez on the left
at low I'-1 jons up with asymptotes on the right atahigh‘j“:g.iu Bn
particulary 'whether-the’ curves of the~firsténder . on:the right are the
same a8 on the left and vice-versa? VWhen we were speaking about the
results of calculations and given corresponding curves (Fig: 2-5) we
pdinted out that this was not exactly like that. All these curves
are of the same type, 288 in Fig: 3-7 (the values on axes are plotted
in logarithmic scale). In every case the left portion of the curve {
{(-s, 8) is the top curve of the first order, and the right-bottom curve
of the second order. in every case also p = 0O for asymptotes of
the second order on the left is not used. Thus, the constént P in‘

the formula for asymptotes of the second order on the left (3-20) is‘\
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bound up with wave type {(n, s), n < 0 in the following way: p =.fn[4 Se
Constant p in asymptotes of the first order (3-19) is bound up yith o
type (n, 8) n >0 in this way: ﬁ =n-s5+1, if p > 0, whereés, the
case of p = O pertains to modé (-8, 8). Basing on‘results of para 5,

we shall prove that this is in general conformity to law.

In para 6 of chapter 2 it was shown that at fzx' « 82

the number of zeros in function § along one mode cannot change.

But in this zone lie all the curves, which are controlled on the

left by asymptotes of the second order, fafnw 32/(2p + 1)2,_gxcspt,
perhaps, their end number. Thus, the curve the left portion of

which is depicted by asymptotes of the second order at sufficiently

high p, has an invariant throughout its extent, number of zeros in
function § » In its left portion this number of zeros, as we know) is D,
and in the right portion, where it is depicted by asymptotes of the
second order on the right, s/f~ fnf( |n| + 1), this number is ‘n\‘-s.
Thus, p = ln‘ - 8. Hence the correspondence is fixed automatically, if
it is taken into account, that to each p S0 for asynptotes of the(
second order on the left and to each p ;; 0 for asymptotes of the

first order corresponds, as not guite exactly shown in para 5, one

curve,

It is still not clear, whether any of the curves correspond
to the case p = 0 for asymptotes of the second order. Now it ié
easy to see, that there is no such curve. On the one hand,iifrthere
ware an existaﬁce of such a curve, there would havé been two curves
side by side: one of the first order, the other of the second,
pertaining to p = Q. Therefore, for each of these modes § would have

been an even function. On the other hand, the parity property of j; is
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maintained along the whole mode, whereas, theé asymptotes on the right
show that for adjacent modes similar parity cannot exist, dees'

with even & alternate with modes of odd 5 . So modes (-s=2, 8),
(-s, s) and (s+1, s) correspond to even ; , and modes (=s~3, &),
(-5-1, 8). and (s,s) to odd. After this the correspondence getﬁeen
asymptotes on the right and left is unambiguously fixed, as shdﬂn

in Fig: 3"7-

It is significant, that although the invariance of‘g Zeros
along the mode is not proved, it is already clear, that in ésymptotic
zones on the right and left the number of zeros coincides, Howéver,
it is not excluded that in some in-termediate zone this numbér

varies, and then returns to the previous value.

Let us now take the case f <2 0. Here, the correspondence
can be fixed on the basis of the follpwing reasoning: On thé right
there are only the asympotes of the firsf order fayfw n (n+1), and
on the left - asympototes of the first order f%{T;—fﬁw’zp + 1 for all
P ;; 0, and perhaps; one exceptional case p = O for asymptotes of the
second ordef, leee, f1fir;-~s. Moreover, in this exceptional case
the asymptotic equation is met not by § ,.but by \l? . Inléthgr
words, in this case \‘7 y should be even, and ; odd, Is th‘er;a

curve, corresponding to these asymptotes?

It becomes clear, that this curve does exist, if it isztaKan
into account, that the top curve (s, s), as follows from asymptotes 6n;
the right, corresponds to odd § s therefore, left of the tophéﬁrve \
there cannot be a2 curve of the first order at p = 0, for which‘the ; is

even, and there is only our additional curve of the gecond order.
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Fig: 37 - Conjugation of asymptotes at

high and low ¥ -1,

Ay

1o

R . =(3.7)
O’-f 1 . 1 5 _ 1 41) = -
0,0001 0,001 001 oY, 1 ¥ .

Fig: 3-8 =~ Characteristic curves at negative f,
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Fig: 3-8 shows calculation results of characteristic curves

at £ <« 0. They confirm everything that has been stated.

It should be mentioned that even in the case of £ < O
the number of zeros of function,‘g in asymptotic zones on the right and
left coincides., Here it is more difficult to notice, since p = n -~ s = 1.

The number of & g (/p ) zeros on the right is n - s + 1. As we have
y

f
remarked in para 5, at f <2 O the number of zeros on the left is not
Py @8 in the case of positive f, but p + 2. Hence we get the parity
of the number of zeros on the right and left. As regards preserving
the number of‘\b zeros, nothing can be said here, since on the left
investigation was of asympotes ,§ y and not of ﬂP « We have only

reminded that with positive f there is a loss of two zeros, when the f,

increasing, passes through one,
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CHAPTER-~4.

VERTICAL STRUCTURE OF OSCILLATIONS.

1. The case of isothermsl stratification.

In the two preceding chapters we have investigated equation
(1;32) - one of the two equations into which the problem eguation (1.30)
gets split. Now let us take the second equation (l.33) for vertical
component ¥y (x). This equation, in distinction from the Laplace's
equation of the Theory of Tides, as has been mentioned, contains stra-
tification chateristics of the atmosphere, entering through parameter
H(z) = R T (z)/g, but does not depend either on the éngulér velocity
of the earth's rotation > , or on whether we consider the earth flat

or spherical. Thus, we have equation

1, U°H XH_ i,
] - - . -
y+{ I++7(.3(1 h)+1gh Pkyzo,(‘hl)
where ﬂ# (X -1 )g + Xg dH/dz is static stability factor. The
term of equation, containing,fg takes into account gravitational ela-
sticity. Boundary conditions, at which this equation should be solved,

have the following appearance i

y'+(—-—-..———-)y=0 x:o, (‘4‘.2)

and

y is limited at K———ec0 .

Elucidation is required, as to values of parameters ¢ , h for
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which equation (4.1) has solution satisfying conditions (4.2) and (h.3).
A series of characteristic curves of the equation will appear on the
plane of parameters, (¢ , h., K Moreover, §ometimes we shall study forced
oscillations from a periodical force active on the surface of the earthe.

Boundary condition on infinity will be of the type of radiation condition.

We must remand, that we already know one class of eigenvalues,
or, to say better, one characteristic curve of the equation: for any
function H (z), not decreasing on infinity, there is a characteristic

curve (ﬁ = f% . The fundamental functions in this case will be

1 H
¥y =¥, exp f (5=~ ) & .

We named it as Peckeris solution in accordance with the name
of the author, who was the first to obtain it for the case of H = const.
But in chapter 1 some doubt was fhrown on the physical meaning of this
solution, since it results in‘ w values, very quickly increasing with

altitudEQ

‘ W o

*H. X
g g AR

o

P ARSI

RS

Fig. 4.1, Types of waves for flat non-rotating isothermal

atmosphere.
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We begin with obtaining certain specific features in disposition
of characteristic curves (h), by investigating simple and many times

described case of isothermal stratification ( Eliassen, Kleinaschmidt,

1957; Monin, Obukhov, 1958; Eckart, 1960 ). Thus, assuming H = const,
f£= (X-1)g. Equation ( 4.1 ) will be
1 o 2H XH % =1 H _
" o+ il el _— (l-h )+ % h y = 0.
( 4.4 )

Its factors are now constant., For those ¢ and h values, for
which the term in braces is positive, all resolutions are of oscillation
type and are limited at infinity. Apparently, it is always possible
to compose linear combination of linearly independent resolutions so,
as to meet the single boundary condition on the earth's surface, Thus,
any such pair of 0 and h is eigenvalue and the problem has a conti-

nuous spectrum.

So, the continuous spectrum consists of all the s b points,

located within the zone

o, |
a H -
- S (1 EL) L X2 L s (4.5)

As before we shall use for illustration the plane G, h, In Fig. 4,1

the zone ( 4,5 ) is hatchured. Boundary of the zone, hyperbola



~ 131 -

1 &% UXH y, X1 B o

has a horizontal asymptote o = X g/UH and a vertical asymptote

h =4 (X-1)d/ . The intersection point of hyperbola with the axis
of abscissae is h = H, and with axis of ordinates c™l= x h/(X -1)g.
The hyperbola is located in respect of its asymptotes as shown in the

figure, because always'X > 4(X-1) /x.

Besides ,the indicated continuous spectrum there is also a discrete
spectrum, The latter could be obtained in the following way. If O and
h are such that the term in braces in equation ( 4.4 ) is negative,
then one of the solutions has the appearance of a vanishing exponent,
and the others - of growing. Boundary condition at infinity is met
only by the veanishing exponent. The resolution, therefore, should be

of the type e "™ ., Boundary condition ( 4,2 ) and equation ( k4.4 ) give

__H 1
m = "——h n—""""z M
2 1 G°H (1 - BE, Xl H
m = _1+.', ) xg —',h - ')C h 3
or
(H 1,2 _ 1 %8 (1 xH y  X-1 _H | (4.6)
h 2 T T kg " Th %X h .

in which case m >0, i.e.

Equation ( 4,6 ) breaks up into two
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h = X H
and ,
2
g £

at h ¢ 2H. The second of thesé curves as the Peckeris curve., The
first curve corresponds to the so called two-dimensional waves. In
oscillations of this type fhe vertical velocity is egual to zero not
only on the hard surface, but alsoc identically. Amplitude of these
oscillations y (x) does not change the sign. Fig. 4.1 shows these

two curves of discrete spectrum: for two-dimentional waves this is a
vertical straight h =% H, and for Peckeris curves = parabola, touching

upon the boundary of continuous spectrum zone at h = ZH,

In spite of the fact that the points of céntinuous spectrum
£i11l up the entire zone, it is gquite easy to imagine this =zone as con-
sisting of continuum of individual characteristic curves. This could
be done in the following way. The resolutions of continuous spectrum

have the form

y = a sin mx + b cos mx,

where

2
2 1, _eH,, _xH, x-1 H ()

xg h ')'-'f h

Thus, m means vertical wave number. With the fixed vertical
wave number (4.7) m converts into equation of curve, which we shall
name the characteristic curve with preset vertical wave number. Fig.h.l

shows several of these curves for various m values, in the figure
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. . = 0 the curve gets converted into boundary of the
ml <:“m2 <i_m3 At m g N
continuous spectrum zone. Each curve consists of two branches. One of

them emerges from point h =X H on the axis of abscissae and has a

horizontal asymptote CT~1 = 1/ H/x g ( m2 + —%H } . The other emerges

from pointks-l = Y B/(®x - 1 )g on the axis ¢f ordinates and has a

vertical asymptote h = (% - 1) H/x (n® + *%*) .

2+ Acoustic and gravitational waves.

In order to give physical interpretation to obtained results, we
should remember, that eigen values of the problem arerobtained at the
intersection of the characteristic curves of the equation for horizontal
portion of the solution, i.e. the Laplace's tidal equation, with
charascteristic curves of equation for the vertical part of the resclu-
tion, i.e. in this case equation { 4,4 ). Let us take, at first, an
absolutely simple case - model of flat non-rotatory earth, Then, as
we saw, instead of the Laplace's equation of the Theory of Tides there
is an ordinary Laplace's equation on a plene, at which the spectrum is
continuous and to each horizontal wave number k corresponds to a

characteristic curve (2.25), i.e.,

6= "Veh k.

In Fig. 4.1 one of these curves is shown by a dotted line. The
same figure shows several curves of continuous specturm in equation
(4,4), and also two curves of discrete spectrum for two-dimensional

-waves and Peckeris curve. The numerals mark various intersection points
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of these curves., We start from points 1 and 2, intersection points

of the " horizontal equation " characteristic curves &= gh k with
curve (4,7). From the two equations it is possible to exclude h and
to obtain frequency & as a function of two wave numbers k and m. For

gg we obtain

2
JH x-1 gHk _ 2 1 2 2
X & + * 72 =m +T+Hk, (L.8)

the same eguation as in Monin's and Obukhov's article t1958). This
guadratic in relation to(fa equation has two solutions, corresponding

to points 1 and 2. Point 1 corresponds to acoustical waves, and point

2 - to gravitational waves ( below will be explained the meaning of this
denotation }. Thus, the bunch of curves in Fig. 4.1 emerging from point
h =X H on the axis of abscissae, determines, on intersection with char-
Aacteristic curves of horizontal equation, solutions, corresponding to
-acoustical waves. The bunch of curves, emerging from point G-l =

= VxH/(X‘—l)g on axis of ordinates, corresponds to gravitational waves.

All gravitational frequencies are lower than frequency = 1/()(—1-)g/ X H,

named Brent-Weisel frequency. For H = 8 km it corresponds to periods
higher than about 330 sec. All acoustical frequencies are higher than
1ég/4H, which corresponds to periods less than 300 sec. Moreover,
the dynamically equivalent depths h for acoustical waves are greater
than X H, i.e., .@bout ll.2 km, and for gravitational waves they are
less than 4(x -1)H/ , i.e., 9.1 km, Correspondingly, phase velocities
1r§£ of acoustical wavés are over 330 m/sec., and of gravitational waves

less than 298 m/sec.
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Next we turn to point 3. It corresponds, as has been stated,
to two-dimensional waves in the sense, that these have no vertical
velocity and at every altitude of oscillation are in one phase. In
contrast, the acoustical and gravitational waves are internal, which,
?esides the horizontal wave nqmber ¥, have also the vertiqal_number e

Wévés, pertaining to point 3, are know as Lamb's waves.

-Finally point 4 corresponds to Peckeris resolution. It lies
on parabola (y2= g/h and on the characteristic curve of horizontal
~eguation = "\ gh k. If h is eliminated from here, there will be’ the

following bond between frequency and the horizontal wave number:

It is exactly in this form the terﬁ was written for frequency
in Peckeris article (1948). Now we shall explain the meaning of the
names " acoustical " and " gravitational " waves. They can be, for
instance, distinguished by their behavier in two ultimate cases : at
e3¢ and X——> 1, The first ultimate transition can be interpreted

as transition to incompressibility. In fact, we are investigating

-

polytropic processes, in which the 1ln p s OT
1 - X 1
=~ 1ln pp = in p - 1n .

are preserved.

At X~ hence follows £ preservation as constant, l.e.

incompressibility. The second limited transition, atX—> 1, corresponds
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to indifferent equilibrium of atmosphere, when the particle, isothermally
displaced vertically (@ = 1), has the’same temperature, as the surrounding
particles, and does not experience any expelling force from either side.
The static stability Ji‘actnrfg = (X - 1)g converts into zero. And what
happens during these two ultimate transitions with acoustical and gravi-
tational frequencies? At —w , i.e., with transition to incompressibility,
the " acoustical " bunch of curves, émerging from point h =X H, withe
draws into infinity. With this the intersectior point of characteristic
curves of equations for horizontal and vertical components at some fixed

¥ and m withdraws into infinity, simultaneously approaching the axis

of abscissae. Thus, the phase velocities of these waves strive to
endlessness, and their perieds to zero. As regards the frequencies of

the second " gravitational " set, they change only very negligibly. In
particular, there is a slight increase of their limiting velocity, the

Brent=Weisel velocity; it becomes equivalent to *Vg/H instead of

'J(%C— 1)g/x H. Thus, for acoustical waves, incontrast to gravitational,

the compressibility is found to be the decisive factor.

On the contrary, at %X 1, the acoustical frequencies vary
insignificantly, whereas the entire gravitational bunch of characteristic
curves in Fig. 4.1 rises into infinity, as the Brent-Weisel frequency

—
‘J (X - LYg/X H converts into zero. Thus, all the gravitational frequen-
cies get converted into zero and the periodical oscillating process
becomes fransforméd into a stationary whirling motion. The determining
cause of these oscillations could Be taken the stable stratification,
or Archimedean bucoyancy. With transition to indifferent equilibrium the

cause of these oscillations disappears and they are replaced by station-

ary motions.
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The reasons stated above justify the names given. In chapter 5

these reasons will be confirmed by additional arguments, pertaining to

structure and energy composition of oscillations.

2. Gyroscopic-inertia waves.

Let us turn now to a more composite case of rotating spherical
atmosphere. The corresponding curves of Laplace's tidal equation were
déscribed in preceding- chapters. Fig. 4.2 shows how characteristic
curves of Laplac's tidal equation intersect with characteristic curves
of vertical equation (4.4). For a curve of the first order asymptotically
approaching with h increase the axis of abscissae,the situation changes
very liftle in comparison with that, which took place in the model of
flat non-rotating earth. The only difference consists in the fact,
that instead of the continuum of the horizontal equation characteristic
curves we have a disc;ete, though quite dense, set of them and the formula
for charactéristic curve & =VYgh k is not exact any more, but only

asymptotically true at sufficiently high h values.

6 e — —

L e e 5 n
T
—

! === 1

Fig. 4,2, Types of waves for spherical rotating isothermal

atmosphere.
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The high-frequency gravitational and two-dimensional waves, and
also the acoustical waves depend very little on such factors as the shape
of the earth and angular velocity of its rotation, which can only affect

waves of planetary scale,

But in Fig. 4.4. we see intersection points of charateristic
curves of eqution (4.4) with characteristic curves of the second order
of Laplace's tidal equation, which were not present before. These inter-
section points are marked by numerals 5 and 6. The maximum ffequencies
for these waves are given by Rossbi-Haurwitz formulas O = 2w s/nin + 1),
since the curves of second order are nowhere below their asymptotes, deter-
minable by this formula. Thus, here we are speaking of extremely low-
frequency oscillations, with the least period equal to a day, but, as a
rule, considerably higher. 1If the angular velocity of rotation is assumed
to be zero, the horizontal asymptotes of characteristic curves rise to
infinity, i.e. the periods become infinitely long, and instead of waves
we have stationary motions. Thus, the physical cause of these oscillations

is the rotation of the atmosphere, gyroscopic rigidity.

Here distinction should also be made of oscillations, corresponding
to points 5 and 6. The first belong to discrete spectrum of vertical
equation. Their amplitude y(x) vanishes with altitude, and they have mno
vertical velocity. Their frequendies are approximatelyrrszf2t05/n(n + 1),
If more exact asymptotes are used of the characteristic curves of
Laplace's tidal equation, for instance, (2.18), and to substitute there

" instead of h ( entering through y ) the term h = X H, we shall get
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' N2
26 ba%w® | (n ~s)(n + s)(n + 1S |
O'S = nln+ 1) ﬁcafi [‘ (en -~ 1)(2n + l)n2 +
(n.+ 1 -s)n+1+s) ;2 ]. (k.10)
(zn + 1){(2n + 3)(n + 1)

These two-dimensional gyroscopic-inertia waves are knows as

Rossbi waves.

As regards oscillations, corresponding to pcint 6, they are first
of all internal, since their vertical wave number is distinct from zero.
Their existence is bound up with combination of two effects: gyroscopic
effect caused by the earth's rotation, and the effect of temperature
stratification. The frequencies of these 6scillations get converted
into zero with conversion into zero of ¢ , and with transition to irndi-
fferent stratification { X = 1). Therefore, they are the internal gravi—
tational - gyroscopic waves., In order to obtain a formula for frequen~
cies of these oscillations, it is necessary to take a formula for char-
acteristic curves of vertical equation (4,7} and to eliminate from them
h, Since the intersection of characterisite curves occurs within the
zone of extremely low frequencies, it is possible to assume in (4.7)

0 = 0, Then we shall have

2 2we
2Ws (bm= + 1) a““P kK
o = n(n + l)"" (x_ l}gH

X

(n ~s)(n + s5)(n + 1)2 (n +1 ~s)(n + 1 + S)na']
’ {; (2n = 1)(2n + 1)n° *nr Den + 3 m s Dz ¢ (1)
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This formula is asymptotic, It gives good results for not
too high m numbers. For oscillations with low horizontal wave numbers
n, & and high vertical wave numbers m this formula is not suitable.
In the last case it is possible to use asymptotes, obtained in chapter
3 for low Y-l. Formulas (4,10) and (4.11) were given in the Author's
article (1961). In Hough's (1893) and Yaglom's (1953) works formulas
are given for frequencies of two-dimensional waves, where instead of
asymptotes (2.18) use was made of asymptotes (2.21), The internal

waves were not analyzed by Hough and Yaglom.

A few words regarding difference between waves propagating
west to east and east to west, It is known that the difference between
these waves is expressed in the f sign. It has been shown above
that the characteristic curves of Laplace's tidal equation in the case
f < 0, i.e., for waves, directed west to east, had no horizontal
asymptotes. In this case there are no gyroscopic waves., In other
words, all gyroscopic waves, both external énd internal, always pro-

pagate east to west.

As regardé‘the quick waves ( acoustical, quick gravitational
and Lamb's waves ) their frequencies are such that they are determined
very precisely by asymptotes (2.6)I f\”"ﬂn(n + 1)Y s completely
independent of f sign. Asymmetry in direction begins to be felt only
for very slow gravitational waves, where the f sign enters into the
- next term'of:asymptotesa ESee-(2.19) - asymptotes at high \/_l‘and

(3.19) ~ asymptotes at 10w,v—i]' ‘

The next remark we make in relation to negative h values, We
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know that in the left semiplane, at negative h values, lie some char-
acteristic curves of Laplace's tidal equation. Moreover, these curves
are wholly in the zone f « 1, i.e., within the zone of periods higher
than half a day. As regards the curves (4,7}, they also penetrate into

left semiplane, into the zone of negative h. But this occurs at

g > ‘v (x-1)g/%H, i.e., if the periods are less than 5 min, Therefore,
the characteristic curves of Laplace's tidal equation and of equation
for vertical component cannot intersect in the negative semiplane. Thus,

for natural osc¢illations h is always positive,

And one more remark, As can be seen from the figure; at suffi-
ciently low ¢ , the characteristic curves are very near.tp their ver-
tical asymptotes. It means, that in the estimate of these natural osci-
‘llations in equation (4.1) it is possible to disregard the terms con-
taining ¢ . If we analyze the process of obtaining this eguation,
paying attention to whence these terms are obtained, we will discover,
that these terms originate for the left portion of Euler's third eguation
(1.23), i.e., with estimate of vertical acceleration. Disregarding
these terms is general in meteorology, which studies the slowest proce-

sses, and it is known as approximations of quasistatics.

In what way will the pattern of natural oscillations change in
quasistatic appréximation? All the curves, corresponding to gravita-
tional waves, will be substituted by their vertical asymptotés. The one
which is not substituted will remsin straight h =X H, since it is

vertical., The acoustical bunch, as well as Peckeris curve. disappears.
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Hence it is possible to come to the conclusion, that the'quasistatic
approximation doeé not change the Lamb's and Rossbi waves, 506 important
in meteorology, insighificantly distorts the alow gravitational -
waves with periods higher than about 15~20 min., highly distorts the
quick gravitational waves and completely destroys the set of acoustical

WavesS.

L, The case of real stratification.

As mentioned in the introduction, we are taking as temperature
profile the standard atmosphere CIRA 1961 ( see Fig. 1,1 ). Starting
from a certain altitude the temperature rises almost linearly. We shall
assume further rise of temperature as linear. It should be taken into
accouﬁt in this case, that our equations generally have physical meaning
only upto an altitude of about 150 km, therefore, the style of temperature
profile above this altitude is of no significance. Only those properties
of resolutions have physical meaning, which are not highly dependent on

the behavior of equation factors at high altitude.

Due to temperature rise with altitude { it begins at an altitude
of 90 - 100 km; the region above this level is known as,thefmospherel)
all solutions of our equations, except one ( for ¢ énd h data ), are
found to be quickly rising with altitude; one solution, on the contrary,
just as quickly decreases exponentially. Thus, the boundary condition,
set at infinity, picks out one out of all the solutions. However, uptil
now, not for every of such solution, i.e., not for everj pair of ¢ , h,

the condition is alse met on the surface of the earth. Those values of
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parameters, for which it is fulfilled, are the eigen values. Therefore,
in the present case the spectrum is always discrete. We will note first,
certain general regularity in disposition of characteristic curves on
the O , h plane, then describe the method of their calculations and

the results., Finally, it will be found that these curves are very

similar to curves for isothermal atmosphere.

First of all, a few words should be said regarding negative
h values. Here the position is very different from that in the case
of isothermal atmospheré. With high wvalues of vertical coordinate
equation (4.1) could approximately be written as

62 H2
gh

¥y o~ y =0,

At negative h both the linearly independent solutions of this
equation are of oscillating type and limited at infinity, This shows,
that at negative h there is a continuous spectrum, and any pair of T
h belongs to this spectrum, in contrast to what was for h > 0, Formally,
we are obliged to analyse these solutions also. However, they could
hardly have any physical meaning. This is clear from the following :

The characteristic curves of the Laplace's tidal equation fall into the
region of negative h values only at very low frequencies, o< 2w .,
But for such & values the term aHe/gh, which determines the asymptotes
of fundamental funetions, begins to prevail over the term HP /% gh only

at very high X values, where
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B -2 2

Below this altitude the term in braces in (4.1) is negative,

the solution very gquickly rises, since the sign of the second derivative
of the solution coincides with the sign of the solution itself, and at
h <. 0, according to the boundary condition (4.2), the same sign has also
the first derivative. Thus, the solution rises very guickly at least

up to altitude, where 4102 >ﬁ' JX H, i.€.,

IZ
1> 4¢u233 N

If we consider that/g has the order 10 m/secz., then this evalu-
ation gives for H values of about 10000 km, or for temperature hundreds
of thousands of degrees, Only above this altitude the solution begins
to decrease, so that finaily the boundary condition at infinity is found
to be fulfilled. Hence it is possible to come to the conclusion that
the solution is really distinct from zero only at very high altitudes,
for which our equatibn is written purely formally and does not reflect
any physical reality, Thus, these solutions appear due to conventionality

of the mathematical model.-

We may also add, that, by adopting approximation of gquasistatics,

we would have

wooo( Lo EE
y'= (- = } y.

At h <. 0 the term in round brackets is positive, i.e., y'" and
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vy have similar signs., If it is also taken into account that due to boundary

condition y' = ( “%— - —%n Jy at X = 0 similar signs will have
y' and y, and it will become clear, that in this case the resolution

is & monotonically rising function of altitude and will never die- out.

In the investigation of natural oscillations there is no need
to consider the negative h values. The forced oscillations are a dif-
ferent matter. In their investigation special attention is being paid

lately to the region of negative h.

When the characteristic curves are calculated on electronic
computer it is impossible to solve the equation in endless region., The
solution has to be Eroken-off at atcertain level, substituting for the
remaining portion of the region some imaginary boundary conditions. We
have fixed the top limit at an altitude of 200 km, assuming, that the
solution derivative there is equal to zero. Another natural version
of imaginary boundary conditien at an altitude of 200 km, is to assume

there, as on a hard surface, vertical velocity equal to zero, i.e.,

to take condition (4.2) at the top limit, the same as on the bottoma.

5. Calculation of characteristic curves.

How to calculate characteristic curves of eguation (4,1)? We will
.be ». in a way, probing the whole (O, A—) plane along some test curves
in search for a pair of eigen values , he As test curves we take the

already familiar curves, depicted by equation

0= ‘/ gh k,
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which are the characteristic curves of horizontal equation in the case
of model of the flat non-rotatory earth, k being horizontal wave number.
We substitute §° from this equation into equation (4.1), thereafter
obtaining an equation with one parameter h

o )

-yt o+ %ﬁ + k°H vy = H gkzh + {? ) ¥. (4,132}

Xg
Let us take solution of this equation, which meets at infinity
the limiting condition being zerc at infinity ( or meeting at altitude
X corresponding to z = 200 km, the adopted imaginary boundary condition ).

We denote this solution by 9 ( x, h Js We make up function

dg{0,h)

M (n) = "ETT%TET"_ . (4.14)

Integrating equation (4.13) by means of some numerical method
from point x = X to x = 0, we can calculate for each value of h

the value of function M(h) and plot its curve. At the same time it is

possible to plot curve of function

N () = - - _E_%.Q)._ . (4.15)

Those h values, at which these curves intersect, are sought- -
for eigen values. In fact, the solution of equation (4.1)¢ (x , h) then
meets hoth the condition at level xo( in plotting J, and the condition

on the surface of the earth since
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d@P(Oh) (1'_111(10) )4(0’11).

Function N(h) is monotonously rising. What general reasons
could be given in relation to function M (h}? Let us calculate, for

instance, derivative dM/dh

dM 1 ag'(0,h) d % (0,h)
= ‘? (O,h)"?'(o|h) — =
dh ?2( 0,h ) K dh dh

( the prime mean derivatives from x ). Functionﬂ’( x,h ) meets the

equation

~gn e (4 B2 )¢ - Hg ((1Pen + ‘-é—)cf. (4.16)

Let us differentiate this equation by h

1 de _ H .2 B, 449
+(-J+—+kH ah -"‘x"g' (k"gh + h ah +

H 2 B

We multiply equation (4.16) by & /dh and substract from it
equation (4,17), multiplied by P 3, then integrate the difference from

0 to X, = Ve get

a“f(o,h) 4T (0,n)
G (O,h) "'"""Eﬂ"‘“‘— -~ (0,h} ——Eh-—-‘-— =



This term we substitute in formula for derivative daM/dh

o
gﬁ = — L g ;?- (%25 - ~1§)<?2(x,h)dx.
$<( 0,h ) g n"
Y Thus, the sign of derivative depends on the sign of integral

(5 H (kzg - —%?)cfa( x,h ) dx. Now we take intoc account thatiﬂ (x)
h

i8 limited both from the top and from the bottom

. . 2 _ 2
(approximately it may be assumed, that g, == 1.4 m/sec” ., 182 m 12 m/sec .

Hence it follows, that at h > /Ql/k g we have dM/dh > O, and at

h<(V /k%g -~ aM/an £ O,

The fact, that dM/dh > O at sufficiently high h does not
mean monotonous rising of function M (h), There is a calculated multiple
of the break points of functibn M(h), these h values are the eigen
values of equation (4,13) with a simpler.boundary condition at x = O,

namely, y(0) = 0, Between these break points the M(h) rises from -o®

to SO .

In the region of h values, where d¥/dh < O, there is also a
caleulated multiple of break points, accumulating towards h = O, and

between each two break points M(h) decreases from ¥ee to - & , The
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-

o

gﬁﬂﬁiizzfz;rve of the function in guestion is shown in Fig. L.3 for
] 0 T2

kK = 0.2 kn .
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Fig. 4.5. Functlons M(h) and N(h).

The above reasoning could be made somewhat more precise,

short coming was the existence of zone“voe / k g <h <:«J 2/ K £

in which the sign dM/dh remained undetermined. This could be eliminated,

if we take a more complex function

p(ny- — ) - N(h) ]_—mh) - mch)_] .
c2 _ & g(k -1
h

Apparently, the eigen values of the problem are obtainable as

'the zeros of this function. Let us calculate its derivative:

dP(h) aM H(O) ) KoH%+1
= - - (M - N) ——— s,
dh ( dh g(k7h° ~ 1) g(k%n - 1)2

or

oD
aP(n) _ g ______(k £ ) H(O)‘]
g - g ax - = X
dh T‘E(O Sy %
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h k%h2 4 1
55 - (M - N)
h

- 1) g(k%n® - 1

gk )% )

Now we shall convert the integral. As will be shown in the next chapter,
this integral is closely bound up with the concept of energy. The fol-

lowing identity occurs, which could be proved by partial integration:

O o0

2 " 2
S % [52H<f+g(tr' - EE;L)] dx+ g xg@a[‘fw (% - -:—EL--)ca dx =
o

o)
O O Y g A

e (B2) (P - )} ¢ .

The left portion of this idéntity is positive. We denote it

by E. Considering that (0) = M (0), we get

o .

H /2 4 2 E

xg W&~ 5)gdx="7 z *
) X& h (k°h » 1) xg

2.2 ‘

EK"h™ + 1 il 2
+ (M ~N) +~=— (0).
[ n(x*n® - 1) . h;J T

Finally, substituting this term into formula for dP/dh, we shall

have
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dP (h) - Eh - :> 0

(k2h2 - 1)2 xgéfa { Ok )

In this way there is no zone of undetermined sign. The zeros
of P(h)} function ( i.e., the eigen values of our problem ) alternate
with break points ( i.e., eigen values at zero condition on earth's
surface ), if we do not count the additional eigen value 52= g/h. In
other words, Fig.4.3 shows relative position of M{h) and N{h) curves
in the general case. There is only one branch of M(h) curve, beth
ends of which withdraw into infinity of one slgn, the branch, on which
lies the point (52= g/h ( or kK h -1 =0 )

Fig. 4.3 also shows the curve N(h) and the intersection points
of both the curves. This is the sought for eigen value h. The

-1

obtained # and & values are plotted on plane ( h, O ) Then the

k esomewhat changes, i.e., the test curve shifts, and the whole pro-
. cedure is repeated. As a result there is a combination of all the
characteristic curves on plane ( h,cr_1 Je

Fig. 4.4 shows the main mlculation result of equation (4.1)
characteristic curves for vertical component. The first and the basic
thing that can be said by looking at thé figure is that the general
qualitétive pattern of characteristic curve éosition in a plane is
very similar to the pattern, which took place for the.isothermal atmos-
phere, The curvés are also mainly grouped into two bunches, of which
one correspends to oscillations with quite high periods, and the other,

in contrast, to quick, short-period oscillations,. It is. natural, as: - .-
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previously, to call the first oscillationé gravitational, and the second-
acoustical. The resemblance consists also in the existence in the
present case of a curve, very similar to two-dimensional resolution

h =X H for isothermal atmosphere. Of course, now this vertical straight
h =10 km is complex : it consists of individual portions of character-
istic curﬁes, replacing one another in sequence. We shall denote this
straight ( slightly curved at the bottom ) as the main complex mode.

In the next chapter'we shall see that even the properties of correspon-
ding solutions are very similar to properties of the isothermal atmos-

phere two-dimensional solutions.

. o ber. _
107}
0% '
w'tk . /
L 1 —1 1 1
o 5 0 5 20 25 R K

Fig. b.b. Characteristic curves of equation (4.1) in the

case Of real stratification.

6. Short-wave asymptotes.

Even in the figure it can be seen, that the bunches still have



- 153 -

the tendency to gather at points on axes, as it was in the case of
isothermal atmosphere. This can be proved exactly, and these points
found. We shall find, for instance, asymptotes of acoustical waves at
g—> ¢© . If we still search for intersection points of characteristic
curves with " test " curves & = -V ghk, then € —F ©° will correspond
to K —>3o0 4, i.2., to asymptotes of short waves, The h eigen values,
i.e., the intersectionApoints of N(h) and N(h) curves alternate with
M(h) break points, i.e., with eigen values of a simpler marginal problem
at boundary conditions on the earth's surface y{(0) = O, In other
words, the characteristic curves of one marginal problem alternate with
characteristic curves of another. If we prove, that characteristic curves
of a simpler problem gather at one point on the axis of abscissae, the

same will be proved also for the characteristic curves of the main problem,

Substituting in equation (4.1) the variable according to formula

x = ¥ ha s We get the marginal problem

N (ﬁagﬂz . igﬁ‘)y (-1 "2;; Yoy, y(0)=0. (£.19)

It is reguired to investigate the behavior of eigen value h
atF— oo o+ This is also a problem of guasiclassical type, similar to
the one solved in chapter 3., First of all it should be mentioned, that
'ineaéﬁof the round brackets in (4,19) may be left only one term, con-
taining 6'2, as we are studying the behavior of solutions at high 6'2.

Now we have
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-y + H( xH - h }y = O.

This equation is already similar to Schredinger's equation and

the asymptotes are given by Bohr's quantizatioﬁ

§2 [
o § AT [ 37 ¢ o

where is a whole number, the number of eigen value, and C 1 5.2 '

turning points at which h =X H, Returning to variable x, we shall have

X2 r‘*
L S 'H(x)[h - xH(x;j dx = (n + -%—)31 , (4.20)
xgh X1

where Xyy X, are turning points, at which h = X H, At r—s < the integral
should be striving to zero, i.e., all the " levels " drop down to the

bottom of " potential pit " H, or

lim h
T 3 OO

H

xH . . (4.21)

Thus, it is proved, that all the tharacteristic curves of acous-
tical type in the limit case ¢f high freguencies, or short waves, gather
at point h = Hmin on the axis of abacissae. Moreover, as in chapter 3,
the conclusion may be drawn here that the solution y is mainly concentrated
in the rsgion, between the turning points x1.<: X <: xa, and outside

this region it quickly vanishes. In other words, the high-frequency
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solutions are concentrated in a narrow layer of minimum H values ( i.e.,
minimum temperatures ) around altitude 84 km ( slightly less high-
freguency waves may concentrate also in the zone of the second minimum

in the vicinity of altitude 17 km ), We shall speak of this later on.

Quite similarly the investigétion is made of the limiting case
of short gravitational waves. This requires finding solution asymptotes

of equation (4.1) at h—3>0. Again, discarding low terms, we will have

2
H 2 ~
-yt gh (5 - xH)y:O,

y(O) = O-

Asymptote at h-——3 0 of gquantization type has now the following

look:
X
2
— ( R I A N S T
. xH 2
Yy sh .
1
Hence it follows, that
L2 A
tim g = (-XH >max "o (4.23)
h—o
¥ Thus, frequency of the very short gravitational waves is similar

to mak%@um Brent-Wysel frequency WCE7§ET;;; and the solution is mainly
concenf;ated in the narrow zone Of the highest relative static stability,
characterized by Brent-Wysel frequency. This zone falls approximately
to altitudes 100-~110 km., The layer of high stability is, thus, a sort

of wave guide for high-frequency gravitational waves. (The second wave
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guide, where less high-frequency gravitational waves may concentrate,

corresponds to the second peak of Brent-Wysel frequency at an altitude

of 30 km ). About this too, we shall speak later on.

7« Long wavesS.

The assumption that temperature rises limitlessly with altitude,
has resulted in discreteness of the spectrum. However, in the same way
as the analysis of equations for higher altitudes, this discreteness is
of formal nature. Actually, solutions of equation (4.1) begin to vanish,

when the value

2 .
HP et "xgﬂ (1 _JEE—) + ngf (4.24)

becﬁﬁes negative ( at sufficiently high altitudes this takes place due
to terms -~ (THa/gh on the strength of our assumption ). However, for
very low fréquencies or for high values of equivalent depth h ( i.e.,
for long waves ) this occurs‘at a very high altitude, the analysis of
which within the framework 6f our problem has no physical meaning.
Assuming, for instance, that we are interested in the thickness of
atmosphere upto 200 km., let us see, at what values of parameters,g, h
the vanishing begins not above altitude of 200 km, i.e., when the value
ofgéarameter,}ia at altitude of 200 km is negative. In Fig., 4.5, below

line 3 lies the region of parameters ¢, h, for which ,a2(200)<<: 0.

Let us analyse now in more detail, what happens in the region
above line 3 in Fig. 4.5, in the zone of quasicontinuous spectrum. The

energy now cannot be fully retained in the lower 200-kilometer layer,
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as it was for fully discrete spectrum. The energy penetrateé to higher
altitude. However, even here there are some thermal barriers, hindering
the drift of energy to high altitudes, These are layers of the least)ﬂa
values. For long acoustical waves, i.e., at high h values, the last
two terms in formula (4.24) could be diérégérded and what we shall
obtain is that the barriers are the layers with the least H values,
i.2ay the cold layers. Thus, we see here total inversion of position
whieh had place for short waves. There the c¢old layers which were wave-

guides, are here -~ barriers.

For long gravitationél waves, at low © , the terms may be dis-
regarded in the equation containing ¢ , and we shall get as barrier
layers with miﬁimum values of product /3 Hoe &Since /g'varies at consi-
derably highef rate, than H, these layers approximately coincide with

the minimum position of /2 at an altitude 60-70 km.

How effective are these thermal barriers? They cannot serve any
more as an absolute obstacle for energy penetration into high layers,
hut can only retard this process., The discussion of this question could
be conducted in the same way, és in guantum mechanics the study is made of
the so called %unnel effect an event, very similar in form to the one
under discussion, We should place in the 1;wer part of the atmosphere
a source of periodie oscillatigns, and at the top boundary z = 200 km
to set a certain condition of £he type of radiation, which should separate
out of all resolutions those of the type of waves, propagating upwards,

discarding waves propagating into opposite direction., Such problem for

forced oscillations was analyzed by Wilkes for equations in quasistatic



- 158 -

-1
G cex. n=7 6 & 4 3 21
, 1000 |- N
- - I
soo | L ¥
. I : Iy
600 - ! ok .:I
L | { ! d
! ! B
- | . : | T
L | I T
| ] m
| bl W
200 | ! ! : I
! [
L
I .
i
)

160 | 1
so 1 '
L
|
&0 \
: ) !
40 -~
_——
2
-3
0 A 1 1 N S N
1 2 &% § 8 1hkm

Fig. 4.5. Characteristic curves (1) and the curves of

resonance peaks (2) of the problem on forced

oscillations., 3 - limits of positive }ca,%

region,

approximation and with a different temperature stratification. He took
as the compelling forces the tide - generating forces, which are active
mainly on the surface. It would be of interest to us to follow the way
of the real spectrum conversion into spectrum of Wilkes type with incre-

asing wave length.

Let us formulate conditions at the top limit. We assume, that

42(200) > 0. Also, that above 200 km the factor A° is constant. Then
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] ife
the equation (4,1) has two linearly independent solutions e # and

efifiz, If it is taken into account that dependence on time in our

i . i(gt- =)
problem has the form elﬁ't, it will be clear, that solution e J

. . i{ t- z) a wave propa-
is a wave propagating upward, and the solution e prop
gating downward. Only the first one of these should be left. It is

defined by the marginal condition

d .
—-a%— = - 1jfiy, z = 200 knm., (4-25)

In this paragraph we shall also analyse resolutions from the investigated

zone /“2(200) < 0, but on condition
S -1/ e = (4.26)
et - ¥y z = 200 km, .l

This condition denotes exponential vanishing of solution above 200 km,

if }62 is taken there as constant.

We introduce a fundamental system of equation (4.1} solutions.

We assume

y(1) =1, y{(2) = O;

=0, W -1 at gz =200 ka.

Then the solution, which meets condition (4.25) at ﬁz(aoo) > 0,
will be

y oy W i 2@

Passing on to ceoercive force we account for it in the marginal
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condition

| | 1 1
y' (0) - N(n) y (O) =LL , N(h) = iiffﬁy* - T (4.27)

where £) is the preset amplitude of disturbing force. If the term is
considered for vertical velocity (1.38), the marginal condition (4.27)
can be interpreted as the.amplitude setting of vertical velocity on the
earth's surface. In Wilke's work this condition for the case of semi-
diurnal oscillations was obtained with an estimate of tide-generating

potential. Denoting

Then at ;af >0

o2 L a2 002 p2 @ an2 ' o2,

andat/zz £ 0
*

- . ) 2
1202 ) @y, 0)- /-/U-E(M(B)-—N)y(a)(o) _

Now it is necessary to choose some measure, which would aspprailse
the intensity of oscillation's excitation at a given amplitude of per-
turbing force. This measg;e, following Wilkes, we take the land pressure
amplitude. From (1.19) and the term for vertical velocity (1.38) we find
this amplitude { with accuracy up to constant factor, whieh is of no
interest to us )

(2
2
P = (52 - f%) y+g (M~ Ny .

Hence without difficulty we find pressure amplitude at /fl/ = 1:
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2
a) at}l; > 0
' 2 2
( e %? )+ (M(l)—Ng} {y(l)(O{] +

2@ 1 L@l @ )2
Lz A€ D @] @0

Ve - 2
} P2 [y D] “ 4

~ (4.28)

2
ap? (M(z)_N)zi:y(z)(O)]
b) at/@e < 0
2
s 1 (1) (1) 2 g 1
(€D o] Ve 454

2
NIy y@(o)}

— : (’"‘-29)
E(M(l)_N)y(l)(o)_ 2 62 yy g

R = 5
(2)(0) 2

The following estimate was carried out on computer: For series
of wave numbers k, sfarting from sufficiently high ( short waves ) and
ending with very low, R values were found and plotted on a curve ( more
correctly, on the curves given below was plotted the R/h value/sec
Fig. 4.6 ) . Found on Fﬁis curve were the resénance peaks., For short
w?Qes these resonance ;eaks coincide with the previously‘calculated
eigen values h, With the increasing length of wave the resonance curves
have peaks at frequencies, not necessarily coinciding with earlier

estimated eigen values.
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The general pattern is shown in Fig. L,5, Here by line 2 are
plotted the curves of resonance peaks, and by line 1 - characteristic
curves at y'(200) = 0. Attention is attracted by the following features

of this pattern. For modes n = 2, n = 3 the resonance peaks universally

coincide exactly with eigen values. It should be mentioned that in

this case the resonance peaks happen to be very energetic and acute.
Curve 2, which initially coincides with mode n = 4, breaks off. Here,
with increasing wave length the resonance is very acute, so that even
insignificént h  variation’ leads outside the limits of resonance peak.
With this the height of peak decreases. After the passing of curve into
region of positive/p[f ( boundary of this region is shown by curve 3 )

the resonance peak very quickly becomes indistinguishable,

n=6

Fig. 4.,6. Sample of resonange curve in the region of

short gravitational waves, k = 0,082 km-l.

The two following modes, n = 5 and n = §, have a very interesting
behavior. The resonance. peaks here pass from one mode to the other
adjacent one. The first of these, the one that passes from mode n = 5
to n = 6, is of high intensity and clearly defined, whereas the second

is incompetent.
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Fig. 4.6 ~ 4,8 show samples of resonance curves. Fig. b6
Pertains to the region of discrete spectrum, Fig. 4,7 - to transitional
zone, and Fig, 4.8 - to very long waves. This example is taken so that
f?r mode n = % the pericd is half a day. This example was taken for
éémparison with Wilke's results. He studied conventionalized atmosphere,
showing temperature curve by a broken line, given in Fig. 4.9. The
resonance curve obtained by us is shown in Fige 4.10. It is clear that
the nature of curve is exactly the same, but guantitatively it is highly
distinct from ours, obtained for standard atmosphere. There is a more
important difference also ~ in position of mode n = 3, This is highly
significant for the resonance theory of tides. The equivalent depth

h = 6.7 km, obtained by us, is too far from that, whi¢h could confirm

the resonance theory. o N

n=3

R/A

= 1 1 !
5 45 65 75 85 95 05 h &M
A/ /V . V

Fig. 4.7. Sample of resonance curve for transitional wave

length. %k = 0,063 km-l.
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Fig. 4.8. Sample of resonance curve for long waves.
kK = 0.57.10“3. .
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Fig. 4.9, Atmosphere model adopted in Wilke's book.
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Fig. 4,10, Resonance curve, corresponding to model, shown

in Fig. J'{'.9-
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Tt should be mentioned, that from formula (4.28) one more con-
clusion may be arrived at. The high resonance peak is obtained in the
case, when denominator is very close to zero., The latter means, that
both the resolutions y(l) and y(z) at x = 0 meet highly accurately the
boundary condition. In other words, eigen values of the problem with
two different boundary conditions at the top limit are similar to each

other. In this case the eigen values are very little dependent on the

boundary condition at top limit,

Thus, the presence of cold barriers results in that at certain
h wvalues the atmosphere becomes hardly permeable for energy propagating
upward, and a low in amplitude disturbing force can generate considerable
oscillations. We are dealing only with periodical in time movements
and not with the process of their setting. Apparently, an incompetent
force can swing the atmosphere to a considerable extent only during a

sufficiently long time.

8., Velocities of Rossbi waves., Comparison with empirical data.

The existence of Rossbi waves and formulas for their velocities
were first theoretically shown by Rossbi and Haurwitz. It is extremely
interesting to eatablish their existence empirieally, from observations
at Meteorological stations. The most perfect attempt of this kind was
undertaken by Eliasen and Machenhauer (1965). By subjecting to harmonic
analysis the field of pressure at different time moments, they found the

velocity of phase shifting for individual harmonic components. These
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data were compared with theoretical velocities of Rossbi waves, obtained
for incompressible atmosphere, l.e., at yf = 0., We know the following
formula for frequencies of Rossbi waves in this case : § =2ews/an(n + 1).
Thus, phase velocity ( or more correctly, angular phase velocity )

Ez - 2ew/n(n + 1).

Eliasen and Machenhauer also took into account the mean angular
velocity of rotation of the atmosphere's in relation to the earth & ,
i.2., the zonal transpésition. Thus, the total angular velocity of
rotation of the atmosphere's in absolute coordinates will be ° + X ,
this value should be inserted into formula for velccity instead of ¢ .
Moreover, in order to obtain velocity not in relation to rotating atmos-
phere, but in relation to the system of coordinates bound up with the
earth, addition should be made to velocity of & . We shall have, there-

fore,

2(o+ ab)
nln + 1)

= o - . (5}.30)

In comparison of empirical results with those obtainable from
formula (#.30), it is discovered that empirical velocities systematically
obtained are lower than the theoretical. Eliasen and Machenhauwer assumed,
that the cause here is non-estimation of the compressibility of atmos~
phere's and suggested a method for the approximate estimate of compressi-
bility. They used one empirical constant, with appropriate value of

which satisfactory coincides with experiment.

It turns out, that it is possible to do without this approximate

theory, if the values of natural freguencies are used for'Laplace's tidal
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equation. Let us take for estimation h = 10 km, i.e., that which has
place for the main complex mode. Then, with an estimate of o 4 taken
by Eliasen and Machenhauer (= 0,0225w ), corresponding value of para-

meter Y =ha® (o + Q:)a/gh will be 9.2. Table 4.1 gives velocity values

of Rossbi waves obtained from observations . esti-
€ obs? ©P € ! incompr.’

mated from formula (4.30), and Ecompr , determined from Laplace's

tidal equation with an estimate of average zonal transposition. The

table shows good concordance of = and £ . A more detailed
obs COmMPT «

discussion of this question could be found in Diky and Golitsyn article,

( 1968 ).
TABLE :: 4 , 1
Velocities of Rossbi waves ( degree / day ).
( n,s ) ' € t g '
obs incompr. COMPT

(2,1 - 70 - 115 - 64,0
( 312 ) - ""O - 53 - 40-3
( 4,3 ) - 20 - 28 - 2b.7
( 4,1 ) - 20 - 28 - 21.5
( 5,2 ) - 12 - 16 - 13.4
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CHAPTER : 5

ENERGY OF OSCILLATIONS.

l. Energy and classification of waves.

In the preceding chapter we saw, that all the oscillations
could be classified in a certain way, by separating acoustical, gravi-
tational and gygroscopic-inertia waves. The indication, according to
which the classification was carried out, was to some extent formal :
the behavior of these waves was investigated, with limit values of some
parameters characteriZing the structure and behavior of the atmosphere:

parameter of static stability, parameter of compressibility and angular

velocity of the earth's rotation.

These 1limit transitions can be carried out in a simple analytical
model, in the case of isothermal atmosphere. For a model which is more
complex and more approximating reality it would be impossible to change
the parameters in this way, and not to lose the reality of the model.

It is impossible, for instance, to direct the static stability parameter
toward the zero. Thus, here the classification is based on simple
analogy, on the fact, that the pattern of characteristic curves in a more
complex case of real atmosphere is Benerally close in its nature to

isothermal model,

However, it would have heen considerably more interesting to

clarify, whether there are structural and physical differences in waves

of various types. The first objective characteristic of these differences

¢
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¢ould be the energy composition of a wave. We have seen in chapter 1,
that fhe energy of atmosphere consists of several different parts. Due
to anisotropy of the atmosphere it is expedient to analyse separately
the kinetic energy, related to horizontal and vertical movements. As
regards the potential energy here, too, it would bhe useful to separate
two parts: energy related to compressibility, i.e., the elastic energy,
and the energy related to stable lamination, i.e., according to termi-

nology of Eckart, thermobaric energy.

It is natural to expect that acoustical and gravitational osci-
llations, i.e., quick waves, are related to periodic transition of
energy from kinetic into potential and vice~versa. The kinetic energy
comprises, on an average, 50% of the total energy ( virial theorem. ).
As regards the oscillations, under the effect of gyroscopic forces,
which are not active, the kinetic énergy here does not pass into poten~

tial and should be, therefore, absolutely predominant.

Hence, we should expect that acoustical and gravitational waves
are distinct, one from the other, by the composition of potential energy.
In the case of acoustical waves the predominant should be, apparently,
pressure pulsations, i.e., elastic energy, and in the case of gravitational
ﬁaves, pulsations of entropy, i.e., thermobaric energy. It should be
mentioned that in spite of the great interest, evinced in regard to
acoustical-gravitational waves, such an important gquestion as the energe-
tics of these waves, has been hardly touched by investigators. It is
only possible to mention the work of Eliasen and Palm (1954), which

dealt specially with energy of waves,
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Let us investigate first the guestion regarding composition of
energy of the waves theoretically. In para 4 we shall give results cai-
culated on computer. A lot of attention will be paid not only to total
characteristics of the energy, but dso to energy distribution in altitude

and in this connection to wave-guiding properties of the atmosphere.

In the space of vector-function a = ( u, v,w, Py P ) it is

possible to introdice a bilinear, positively determined form

¢ * * *
<:a . :> _ § u1u2 + vlv2 + w1w2
1 Y2 7 2

( P, - o2 Py )( pé - CEPE Y av. (5.1)

= PyP5 T
2xp 172 2xpﬁ

Energy is a corresponding quadratic form., If there are two .

natural oscillations &Y t a; s eloit
G-|ta1 , elq;ta )

to zero, i.e., they are orthogonal in this matrix. 1In fact, the guadratic

form for the sum of these oscillations (e* % tal + et taa,

with different frequencies

o , the hilinear form ( et is equivalent for those

elo} ta +

1
+ ei 03t Y = ( a., a J+la., adr 2 cos (0, -0, Jt. ( a,, a, ) should
2 17 1 2y ©2 1 2 * 1 “2

not depend on time, since this is energy; therefore, (al, aa) = 0,

But if two natural oscillations correspond te one and the same ’
but are different one from the other, they should have different values
of h or Y - In this case our bilinear form for them is still zero

on the strength of the orthogonality of the two solutions of Laplace's



- 171 =

tidal equation at the same f = oc/2e) , but different y [;ec:formula
.(B.B}J « Thus, the energy is a very convenient matrix, in which it is
possible to study the fundamental solutions., In particular, it helps
. to expand the arbitrary solutions from fundamental, when the complete-
ness of the latter will be proved in the next chapter. From the demon-
strated orthognality it also follows, that the total energy of natural

oscillations is equal to the sum of their energies, i.e., additive energy.

Now we shall write practically convenient formulas for the energy.
Since all the variables are expressed through divergence, the energy
can also be expressed through the same quantity. We recall formulas
for the energy of four types ( 1.9 - 1,12 J. After ¥ and'd) have been
determined from equations; it is possible to find the values of unknown
-quantities, velocity components, pressure and density. It is easy to
obtain these terms from equations in chapter 1., Thus, for pressure we

have p = p*(x)‘ﬁpf. Here p*{x) vertical component,

-xg? [H02y+g( y'-%—)}
.]/_Eﬁ- e _ 8 '
5o iT QI P )

j;r_.component dependent on horizontal coordinates, We shall analyse two

P*= -

cases, of spherical and of flat earth. In the first of thesei}fzelsqkb(fi)
where 1#3 ~ solution of Laplace's equation, and in the second even more

. ] i k ..
51mp1y'§p'= el(k X, v 5 X ). Similar terms we have for vertical

velocity



2w - (5.2)
B (g% - &)
po B
and for entropy _
2, ppw .
p-cp=-~ e (543)

For horizontal velocity components we get the following ferms.
In the case of the spherical earth

- iorp*fexp '.( isl)D)

u = 3

4ao§ # 1 - yﬁzﬁ

PP'(g*ﬁ—;‘))exp(is?)

2aw v 1 - PE P_

. (5.4)

v =

where function f was determined in chapter 2 lfsec system (2.3)} . For

the flat earth we have u = = klp/a'P y V= - kEP/O'P .

First, for simplicity, we shall analyse the case of the flat
earth, which is admissible only in the study of sufficiently short waves.
We find the energy of a vertical air column, section area of which is
one., Substituting the terms just written into formulas for energy (1.9)-
-(1.,12), we get the following relations [:right portions are reduced
xﬁo/ara(o-a-g/h ) timESJ= |

s 2
E = |\ xH
r - h

]

2 1
TR




* 2
1
Ey:jcy*-g(y;——-é-ﬁ-y):] dz
o0 a >
1 1
Ep = S SF v+ O -5) yJ dz. (5.5)
o]

The integrands densities of corresponding parts of energy, we denote

by eP y €p 1 ey s and e respectively.

2e Theorem of virial.

We demonstrate that on the assumption of flat non-rotatory earth
kinetic energy ( average during the period ) is equal to potential, i.e.,
EP + EB = EY + ET' For this the term for energy has to be converted, |
First of all we shall deal with kinetic energy. We integrate the first
two formulas (5.5), by parts with consideration of equation (4.1} and
boundary conditions (4.2)-(4.3). We shall not use the variable x, but

the old variable z. Then the equation and the boundary conditions on

the earth's surface will have the appearance:

' e :
¥y o+ HT ' o+ [__ _:;;5— + xgH (1 - ’;1H Y+ xgﬁH] y=0, (5.6)
yl + ( -—%—- —ELH) = 0 Md z = 0, (5.?)
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Now, we convert the term for the horizontal component of kinetic
energy, twice applying integration by parts and using ( 5.6 - 5.7 ):
0

xH 2

oo

, 2 2 2 2 H

+ 28 (of- vyt ¢ (6 - ) Y]d““";? syt | =
o
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1
sﬂu
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Thus, we have
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£
B, =k (F - S B (o2 __fH__)ya iz ""]SEI%L.)— (v? ~ £5%00.
Q

( 5.8

Similarly, we convert the term for the vertical component of

kinetic energy. We are giving only the final result, omitting all cal-

culations

[4%4)
EB=52(¢2_~§-)J(1-—£>y2az. ( 5.9 )
&)

For the elastic energy we get the‘following formula

w .
SRR S (NN K AP T NS T U
y =& ) |THTY e xgl " gh " gi’ "
o]
p H' 2 - 2
ot HEHEJ y}dz+g(h-ﬁ' Y yo(0). ( 5.10 )

Here, in contrast to the two preceding cases, we did not integrate
part by part the term containing yy's The conversion of the term for
thermobaric energy is somewhat more complex. Here, use will have to be
made of one auxiliary relation. We multiply eguation ( 5.6 } by Hy' and

then integrate, using the integration formula part by part we get

00 00

R 1l 02 H 4 E
SH (y')7dz - S It (1 -—3;1 )+ xgh] y2 dz -
o ,

0
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©) (=to7 LY 200) - | 1- 22 .
~2(0) 2H{0Y ~ 3;.) y O) = “TEtey - xg B h

xgh

. E(O)] +2(0) = O. (5.11)

Now we shall deal with the formula for thermobaric energy
00

e § [eporiat b vt 37
Q

= S [(x—l)ga(y')zﬂcgaH'(y‘)a— Lgﬁ(—ll-l- v--al—H)] y2+
o

R L

Applying formula { S.1l )

)
2
Ep = S {(n - 1)g2(y')2+xg2 ["'L}?* i—g (1 -—%—) +
0

B .2 11 2 1 1.2
+xgh] N A R AL v R

+%e®BO) (FEGey - )7 v2(0)exe? [” T *

o2 xH(0) Bl .2 11 2
+—§E'(l - o )+ xgh y(0) - gﬁ (jr _-Eﬁ-) vy (0).
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Separately we convert the first term

od

o0
'S cx'f 1)32(3')2dz = = S (2 - l)gayy" dz - (% - l)gay(O)y'(O) =
o

e}

H
¥
1
Z
1]
n
0\_——""\8

‘jﬂw ' 1 ; 62 (1 -~ ———
i 99 Y| "THEE T xgH h

2 1 1, .2
* xth] y© Jaa- G- De” (mey -3 ) v (O
GSO
o

> )
c xH }3 H 2
- - 1) &8 o - ) ¥C (0D,

Substituting these terms into. formula for thermobaric energy

and converting we finally obtain the following:

oo
2 H' 2 1 1 X 1 xH!'
B, = ‘ e + - - - —-
D = 8 S 7'y [ﬁ“ ( ZF " FeH eh *tan " gn )
o

PSS ST IO (5.12)
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Now without any difficulty we find

o0
4 + 2
Ey+ETzS[u*-o'2-&h-E—+fag- y dz =
o]

~ (g% -5 XH;O)g y2(0).

h

Adding up the terms for horizontal and vertical components of

kinetic energy we get the same

oo
5 eE, = 5 (P £ (P~ 3% o - (- £y OB 20),
o]

Thus, the theorem regarding parity of kinetic and potential

energy is fully proved.

In proving this theorem it was essential to assume, that the
earth is flat and non-rotatory. Otherwise the theorem could simply not
be true. If the gyroscopic forces are of significance, the share of
kinetic energy should increase; if we take only the gyroscopie-inertia-
waves, the kinetic energy does not pass into potential energy at all

since the forces in this case are inactive,

Let us try and estimate how much the share of kinetic energy
increases due to the earth's rotation. This requires writing new for-
mulas for energy on the spherical rotatory earth., In this case the
field is not uniform in horizontal.coordinates, and we cannot confine

ourselves to calculating energy of vertical air column of singular
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section. We must find total energy throughout the atmosphere. By using

( Seft ) we write a formula for horizontal energy

1 e
+4&§ (¢ -
-2 | f a © orrtas ap
a3 16aco(l-;u)p
-~ oo
z
i A ” 2
16%0 ( 07 £ )2 ) u | PFyeg (5 —?lH-y)J dz X
o
1 5 "
X [ |82 Er Byt e
A £ # 1 - M

The other energy components we get 1In the same way:

- 2
2
Eil 1L 1 2
Eg = ”*P"g S B |y+ (5 ==x)y|  dz j Japr,
( o°- —E-)
=1

Q
> 2
7T 0o S 2 2
E = +('-l— d d
A E o y+eg (y'-—) zf\}; [

o]
i

T

_ o 2 1
T_%gpo SF. UG T T f 2
o - y dz dpte
(5= £)22 b el 4 v

Hence we discern without difficulty, that the vertical, elastic
and thermobaric energies are proportional to fhose values, which they

had in the case of the flat non-rotatory earth. As regards the horizontal

-
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energy, it is multiplied by additional multiple

1

y-l J’ [f2§2 S '"E%E)ZJ ap_
-1 1 —f*

1
J $?ap
-1

Let us find out by how much this multiple differes from a unit.

For this we must recall formula ( 2.4 ), whence

1
oy [ pP Py
-1 1-pM
P-.l: T - (5'13)

VTS

This multiple is appraised most simply, when it is possible to
use asymptotes of Laplace's tidal equation for highalnl. For oscilla-
tions of the first kind ( in the present case for gravitational waves )

we have

f2§ A~ (1 "_H? ) 4J’ .

Therefore,
1
2
-1 E: 2 8 2
oy ] B VD e
Y 2f

J ¥

-1

For oscillations of the second kind ( gyroscopic-inertia waves )
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2 2
—jiz"** (1 - }L )’g' + ”EI%JE .

Therefore,
1
w1l 2
L e
-1

fp -1= . (5.15)

It is evident, that in both the cases}J > 1, i.e., actually due
to rotation there is an increased share of horizontal kinetic energy. The
last two formulas could be even more firmly based, if an asymptotic value

is substituted in the first one

q}NPlsl’gﬁ,_]_.m_[_ nin - s + 1) P 4

fz 2n + 1 n+l
(n +2i)£nl+ 5) Pi-;} ) (5.16)
and‘in the second
%=n(n+1>,§~Pﬁ,¢N BoBt P,y
{zn + 1){(n + 1)
" n+ s S . (5.17)

(2n + 1) n2 n-1

Caleulations from formula ( 5,14 ) are rather difficult. Instead
of this it would be better to present the main formula ( 5.13 ) in another
way and then to substitute there the asymptotic values of fundamental

functions. Eguation
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. 2
(1-4£76+EE =I?2--(1_P2)r4’

second of the equations in system ( 2.3 ) we multiply by‘plg /(L - ﬁ@)

and integrate. We will have

1 1 |
[ gttt [ 3eEd o
~1

d
f 4 1 - fg

Hence, and from ( 5.13 ) we get

1
eyt £ [ (8- yph ap

o
1
-
1

Substituting here asymptotes ( 5.16 ) we find

1 (n — s+ 1){n+ s+ 1)n . X
Pl T+ D [ 2n+3 ¢ 2 * 2+

+

(n - s)n + s)(n + 1) ( (n + 1) 1-1 -2 {] . (5.18)

2n - 1 f2

For the waves of the second kind we substitute asymptotes (5.17)

in formula { 5,15 ). We shall have

-

Y

p-1= nkn w5+ 1)(n _+s+ 1) N (n + l)(n-+ g){n - s) *
(n + 1)°(2n + 1)(2n+3) n’(2n - 1)(2n + 1)

(5.19)

Let us take the long gravitational waves, corresponding to atmospheric

tides. Here n = s = 2, f = 1, As shown in chapter 2, to semi~diurnal



- 183 -

oscillations corresponds to yul;=50.09. Substituting all this in formula

{ 5.18 ), we find that P =1 = 0.3, f): = 1.3. Thus, in this case the
amplification factor of horizontal kinetic energy due to the earth's
rotation is negligible. We shall see further, that for such long gravi-

tational waves the share of vertical energy is negligibly low, i.e., the

_fwhole kinetic energy consists of horizontal motion energy. Hence it

follows that the kinetic energy of tidal waves composes 57% of the whole

energy, and the potential 43%.

An entirely different pattern is obtained for the waves of the
second kind, for instance, for the two-dimensional Rossbi waves. Let us
take, for example, the same values n = s = 2 , ?f_l = 0,1, and P -1 =
= 10. The amplification factor is found to be so high, that practically
the whole energy { > 90% )could be taken as kinetic. The share of

potential ( thermobaric ) energy increases only at very high Y ( low h Y,

i.e., in waves of large horizontal and low vertical scales.,

The theorem of virial is known in the general mechanics of the
material points system, But this does not relieve us of the necessity
to prove it in our concrete case, since, firstly, it is not always
fulfilled; but as shown by the feasons given above, only in certain
conditions, which need checking. Secondly, although, for example, the
law of energy préserVation is a universal law of nature, nevertheless,
in mechanics of continuous media it is checked again, by way of not aguite
trivial calculations ( which, perhaps, is the checking of the common-
sense of the main egquations ). An almost independent fact is the exis-

tence of quadratic invariant - energy for linearized equations, which
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happen to be approximate equations. In any case this fact requires proof,

Exactly the same applies to the theorem of virial.

3. Energy composition of oscillations.

We £urn again tO'fbrmuiaS'( 5.5 ) for energy of ‘various types..

_Formulas for densities of horigzontal and elastic energy differ only by .

the multiplé M H/h. Henée, it is clear that with h increase)the eﬁergyul
composition of oscillations should change toward: the increasing share

of elasti¢ energy, as against thé horizontal: If we take a look of the
main chart of characteristic curves ( see Fig. 4.4 ), we shall see, that
fhe éhare of elastic energy increases to the side of acoustical waves

and decreases toward the gravitational waves, which, of céurse, is quite

consistent with .the physical meaning.

Exactly in the same way, comparing vertical and thermobaric energy,

i

we not that their densities differ by multiple aiafaﬁ, Where Ui
= ﬁ /MH - Brent -~ Wysel frequency for the given altitude. Thus, the
vertical energy increases in comparisohrwith thermobaric, when the fre-
quency increases in comparison with Brent-Wysel freguency. Vertical
energy is comparable with thermobaric in the range of frequencies similar
to mean Brent-Wysel frequencies. From the Fig. it is obvious, that the
share of thermobaric eénergy increases toward the gravitational wéves,

and that of vertical energy - toward a#&ﬁstical waves, which is again

concurrent with instinetive physical reasoning.

It is possible to write a rough estimate



B, =Z-E , B, = 5 Ep, (5.20)

2 ; ‘e
where, H, o, are certain average values of corresponding quantities.

Now, we add up these parities taking into account that B + EB =& + ET'

y
. 2
(B 1p s (— 1) E =0 (5.21)
wH r T 0_2" B~ VY De

This relation fixes the boﬁd between E and EB.
r

In the region of h, similar to average X H values, thé predominant
should be the horizontal energy, and in the regiom of |r2, similar to (73 -
vertical. However, this relation is very rough, since H and Uﬁ vary
in rather a wide range, and the H and g‘i guantities remain not very

definite.

It is remarkable, however, that it is possible to indicate an
absolutely accurate and simple relation between the vertical and horizon-
tal energy, which permits the estimation of the share of these two types
of energy directly on the chart of characteristic curves. For deduction
of this relation we shéll use other terms for the energy components,
deduced in preceding para ( 5.8 ),(5.9). Now let us reason in this way.
Let us find the slope of the tangent to characteristic curve in Fig. b.h.
Assuming that we shifted along this curve from point ( h,0 ) to point
(h+ dh, ¢ + de'), the solution y depends on quantitiesir'and h as on
parameters and with éach valve of these parameters along the curve meets
the equations and marginal conditions. We denote dy =’7 . Then, by

differentiating along the curve equation ( 4,1 ), we shall have
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" 2 , H
I EERE-NEEE SEE IR

H 2 H
:—E(l—%)yd€+xgh2 (ﬁ-—xqu)ydh. {5.22)

Similarly, differentiating the marginal condition (4.2), we shall

get
’ H 1 Hy dh
AR R A - (5e23)

(thedash above the wariable means, as in chapter 4, that differentiation
was not by z, but by x). We multiply (4.1) by¥® , (5.22) by y, substract
and integrate from O to 00 . Considering} that dz = Hdx, we shall
have, after partial integration, and taking into comnsideration the boun-

dary conditions (4.2) -and (5.23)

1 p. il 2
P 3&; {1 ~ < } ¥y© dz dd2 -

[~ w]
_HG) . 22(0)an = S
h (&)

(B - x6fu) y° az an.

0
_jl
2

Oxgh
If the result obtained is compared with formulas for energy

(5.8),(5.9), it would be possible to obtain an exceptionally simple

relation between the energies

+ E — =0 (5.24)
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(with the use of logarithmic variables h, = Inh, 0, =1n 0’2 it would
look specially simple : 4 ai/ dh, = E, / Eg Y. The ratio between
horizontal and vertical energy is determined by the slope of characteristic

CUI'VEe.a

Hence, incidentally, we shall obtain, absolutely unexpectedly,
one more general conclusion regarding the position of characteristic
curves of equation ( 4.1 )- their monotony. Increase of h causes
increase of G’l.

The relation (5.24) admits even physical interpretation. For this
a concept should be brought in of horizontal gourp velocity, or the pro-
pagation velocity of energy horizontally. Horizontal group velocity
Cop = a0/ dk. ‘Now let us recall that qualities 0 , h and k are bound

by relation o/k = ”Jgi. We differentiate this relation along the char-

acteristic curve

dgh

a0 = dk gh + kG

ja g

hence, even from (5.24), by excluding dh we get

agF _ En o
dk k !
EF+EB
or
Er
‘_‘w—dcp . {5.25)

re E + &
n

where cqp—ais phase velocity of wave propagation horizontally. Thus,
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the group velocity is always less than phase velocity by as many times as

horizontal energy is less than total kinetic energy.

By analyzing the charts of characteristic curves ( see Fig. 4.4 ),
we can say now, that in those areas, where the curve has a vertical
direction or very close to it, the main portion of kinetic energy is the
horizontal. But where the curve approaches horizontal direction, the
predominént is the vertical energy. In the first case the group velocity
is almost a phase velocity, in the second it is much lower than the
phase velocity. Thus, for the gravitational bunch in its lower portion -
for short ('high - frequency ) gravitational waves the share of vertical
energy is high. Graviéational waves correspond to low h, i.e., low
phase velocities *VEE: Moreover, the group velocity of short gravita-
tional waves is much lower than the phase velocity. Hence it follows,
that the group velocities of these waves are very low. Their horizontal
propagation is very slow, and the motion of particles in them occurs
predominantly vertically. With increasing wave length group velocity

becomes higher,

The acoustical waves could have as high phase veiocities as
desired. But the higher the phase velocity, the more horizontal is the
curve, l.e., the ratio of group velocity to phase velocity decreases.
As a result the highest group velocity is not where the phase velocity
is highest, but where the characteristic curve has vertical direction,
i.e,, for curve h <= 10 km, or for the main complex mode. Here, the
group velocity coincides with phase velocity and is 315 m/sec. This
ve;ocity is the same for all fregquencies, starting from some maximum.

There is practically no dispersion of waves here.
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L, Results of numerical calculations. Atmospheric wave guides,

The reasoning of the preceding paragraphs is confirmed by numerical
calculations of energy on computers. Simultaneously with caleculations of
characteristic cﬁrves vélues were obtained of various types of energy.
Table 5.1 gives these values for some natural oscillations, selected,
for example, from various sections of the spectrum, Fige. 5.1 shows
reproduced from Fig. 4.4 characteristic curves, and marked on them are
the points, corresponding to examples given in the table. The contents
of Table 5.1 are as follows. Column 1 gives the number of example,
column 2- number of the wave's mode, i.e., the number of modes in function
y. This number depends, of course, on the bowyndary condition taken at
the top limit z = 200 m. If a different condition had been taken, for
instance y = 0, or demanded conversion into zero of vertical velocity,

the number of modes could have changed by one.

TABLE : 5.1

Energy composition of waves.

Num~ Num-

ber ber o ‘P Crp
of of h km sec. B % Eg $ B, % E n % m/sec m/sec
exam~ mode I

ple.

1 2 3 b 5 6 7 8 9 10
1 9 1.6 13790 50 0 6 Ly 125 125
2 8 2.0 12530 50 0 8 42 140 140
3 7 2.6 10920 50 0 11 39 160 160
b 6 3.2 9690 50 0 -~ 15 35 178 178
5 5 3.9 8860 50 o 15 35 197 197
6 b 5.9 7212 50 0 21 29 242 22
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Num-

Num-

ber  ber o""l e Cpp
of of h km sec. Ep % Eg % Ey, % Ep % m/sec m/sec
exam- mode
ple.
1 2 3 L 5 6 7 8 9 10
7 3 6.8 6780 50 O 32 17 260 . 260
8 2 10,0 5550 50 0 50 o 314 314
9 6 3.1 188 46 4 12 38 175 161
10 5 3.5 176  Ah 6 12 %8 186 163
11 4 5.1 145 Lo 9 16 35 225 180
12 3 6.3 131 47 4 28 21 247 232
13 5 2.3 81 32 18 7 4z 151 97
14 L 27 75 29 21 6 Ll 164 95
15 3 o1 61 27 23 10 bo 202 108
16 2 Loy 59 25 25 10 Lo 210 105 -
17 3 0.56
18 2 3.2
19 0 8.63 12.8
20 1 9.5 9.1
21 2 9.6 9.1
22 3 10.5 8.7
2% 4 80.9 8.6
2k 1 9.52 9.13 'sp 0 50 fo 307 307
25 2 9.46 8,35 50 0 50 o 306 306
26 1 9.49 8.71 k6 4
20 o 307 282
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Num=- Num-
ber ber
of of h km sec. E,% B,% E,% E, % m/sec m/sec
exam~ mode y

-1 c ¢

ple. 7 .

1 2 3 4 5 6 7 8 9 10
27 1 9.60 9.10C

28 - 0 "8.95 Lo - 50 0 56 O - 314 514 -
29 1 21.2 38 15 35 31 19 Ls6 135

AXEEREREEERE AL MRS R KBS R E RS FE XX F R XX TR R EREEBREE TS KB R AR B Rk R Rk Tk R

Columns 3 and 4 show values of natural parameters h and‘(r“l.
Period T is equal to Efrorl. Thus, the period, given in minutes,
composes approximately 1/10 0'_1, given in seconds, Columns 5 ~ 8 give
energy values of oscillations in a vertical column of atmosphere. They
are given not in absolute values, but in percentage fo total energy. It
should be emphasised, that these values are calculated from formulas
( 5.5 }, i.8., for a flat non-rotatory model. As we already know in
the estimate of rotation the share of kinetic horizontal energy highly

increases, specially for the long-period waves of the second kind.

Finally, cclumns 9 ~ 10O indicate values of phase and group
velocities. In principle these concepts are applicable also to not very

long waves and were obtained from the formulas known to us

The examples in the table are grouped in series: series of very

long period, about half a day, gravitational waves, or series of short-



- 192 =

period waves, series of acoustical waves, etc.

| !
5 10 15 20 h kM

Fig. 5.1. Points, corresponding to examples, shown in
Tab, 5.1,

As we have mentioned, the results of calculations illustrate
the facts proved earlier, The fact, that in all case kinetic energy
is equal to potential, is simply the property of those formulas, from

which the calculation was being carried out, and can serve now as con-

firmation of the accuracy of calculations,

For those sections of characteristic curves, which have vertical
direction, the energy of vertical motion is insignificantly low in com~
parison with energy of horizontal motion. This applies to all waves
with h o=~r10 km, and also to alli long-period gravitational waves. The
share of the thermobaric energy of the latter, in spite of the lowness
of vertical velocities, is high. This is caused By extremely low fre~

quency in cimparison with characteristic magnitude of the Brent-Wysel
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velocity ( two orders in our examples ).

However, for one of these modes, corresponding to h = 10 km,
even the thermobaric energy is zero, This indicates, that here the
vertical velocity is imfreasurably less than in other cases ( this circum-
stance is not shown in the tableé, as the energy values are given with rc
accuracy up to whole numbers ). The entire series h = 10 km is distinct
by high degree of two-dimensionality, total absence of vertical velocity,

as in the case of isothermal atmosphere.

The share of thermobaric energy of short gravitational waves
( gxamples 9-18 ) is very high and the vertical velocity here reaches
high values, specially in the short-period waves. In examples 17,18,
relating to gravitational waves with frequencies close to limiting, ver-
tical energy»considerébly exceeds horizontal. In short gravitational
waves the movement of air particles is mainly vertical. Group velocity
of these waves, i.e¢., the rate of horizental transportation of energy,

is, naturally, very low.

In accordance with the general position, the elastic energy
increases with the rise of phase velocity, i.e., with h increase. And
in this case it is found, that the elastic energy of low mode gravita-
tional waves ( examples 6,7,8 ) is not low at all; this speaks of certain
conventionality: in this case of the name " gravitational waves ". The
share of elastic energy of acoustical waves is always considerable., The
share of thermobaric energy could also be appreciable, .if the frequency
is not too high, and phase velocity considerable, which is related to

the presence of noticeable vertical velocities ( example 29 ).
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Finally, once more we pay attention to the fact that the highest

group velocity has the two-dimensional waves of series h = 10 km.

A lot of interesting facts could be learnt regarding properties

" of natural oscillations by studyihg energy distribution of oscillations
in altitude. Those of 1dng;peri0d oscillations-of the first series

( examples 1 - 8 }.have physical meaning, energy of which is concentrated
in the lower layers of the atmosphere, or at least vanishes in sufficient
measure before the limit of 200 km, The energy of these oscillations is
retained by the tempergture lamination of the atmosphere. This separates
those modes, which coincide with resonance amplification in the problem
of forced oscillations of atmosphere., Fig. 5.2 - 5.5 show distribution
curves of energy with altitude for examples 4, 5, 7, 8. We see, that

for the first two of these, pertaining to modes 6 and 5, the energy
vanishes with altitude, but not very quicklj. There is an interesting
regularity - the thermobaric energy attains highest values, where the
kinetic energy is low ( minimum ) and vice~versa. In any case the theorem
of virial is not fulfilled at every point of space, but only integrally,

along a column.

i

I
I
0 24 48‘7 96 120 144 158h kM ll

» ™

Fig. 5.2. Distribution of enmergy in height, Example k.
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1
i
!
i
{
!

0 24 48 72 96 120 14% A KM |

— JR

Fig. 5.3. Distribution of energy in height. Example 5.

!
: !
0 26 46 72 96 120 144 hkm |

Fig. 5.4. Distribution of energy in height. Example 7.

e )

1 - —
0 24 48 72hsM

Fige 5.5. Dié;fggﬁiibﬁ of energy in height. BExample 8.

Considerably a sharp decay 1s seen on the next two figures for

modes 3 and 2. This is not incidental. We saw even before, that these

modes give very acute resonance amplification, Mode 3 is of great interest
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in the theory of tides, as it pertains to h value, closest to that, which

corresponds to semi-diurnal tides, { as shown in chapter 3 this h = 7.9

km ). The attention is drawn on the curve to‘the peak of kinetic energy

at an altitude of about 55 km and the less considerable peak on the earth's
surface. The elastic energy is distributed in the same way whereas the
thermobaric has its peak at an altitude of 30 km. Above lOOrkm the share
of energy is insignificant. Thus, it may be assumed, that the energy of

tidal oscillations is retained mainly in the lower 100 km.

—

—-—-—e.’.

ey, | ) .
0 144 168 h ki

0 24 48 72 96 12

Fig. 5.6. Distribution of emsrgy in helght. Example 12.
R ®

F ™
T 0 2448 72 96 120 144 168 h kM

Fige 5.7. Distribution of emergy in height. Example 15.
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An entirely different nature has oscillation, corresponding to
mode 2 { Fig. 5.5 ). Here, the oscillations areconcentrated in surface
region. The energy very guickly dropps with height, This once again empha-
sizes similarity of oscillations at h = 10 km with the two-dimensional
oscillations of isothermal atmosphere, This behavior is inherent in all
the oscillations at h = 10 km regardless of their periods, starting with
period of about 10 min and higher. As regards the higher-frequency

oscillations, we shall speak of them later.

Figs. 5.6 - 5.7 pertain to examples 12 and 15, i.e., to the same
mode n = 3, as the tidal oscillations, but not of very high periods.
Example 12 corresponds to period of about 1% min. But the nature of
oscillations here remains the same, as the nature of semi~diurnzl tidal
oscillations. Hers the guasistatic. approximation still depicts the
oscillations qualitativély rather well, although there is some quantita-
tive shift ( h = 6,3, and not 6.8 ). For smaller periocds, for instance
6 min in example 15 ( Fig. 5.7 ), the pattern is conaiderably different
from this. Here the thermobaric energy and even the vertical are highly

significant. ©On the whole the energy is more diffused in height.

Fig. 5.8 and 5.9 pertain to examples 14, 17 and 18. All of them
are characterized by low h values. We know, that short gravitational
waves with low h  values have the tendency to concentrate in wave
guiding layers. There are two of these wave guides in the atmosphere:
deep wave guide in the zone of maximum static stability at height of 110
km and a less deep wave guide at a height of 30 km. In example 17 the

oscillations are concentrated in the lower wave-guide, in examples 14
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and 18 - in the upper. Examples 17 and 18 pertain to shorter waves,
and the concentration within the wave guides is tighter. Moreover,
example 14 corresponds to higher mode (4); therefore, the energy curve

has a more dissected view ( high number of peaks ).

Fig. 5.8, Distribution of energy in height. FExamples
14(a) and 17(b).

Fig.s 5+.9. Distribution of energy in height. Example 18,

Let us pass on to acoustical waves, As shown by Fig. 5.1, our
examples pertain to a small area of spectrum - to oscillations with
period of about 1 min of the first modes. This areé is rathér interesting.
Here begins the appearance of short - wave asymptotes. For the short

acoustical waves there are two wave guides in the atmosphere : deep wave
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guide in the cold layer in the mesosphere at an altitude of about 84 km
and a less deep wave guide in the stratosphere at a height of about 17 km.
The shortest waves should concentrate in the deep mesosphere wave guide,

less short could be even in the stratosphere.

As mentioned in the preceding chapter, there is a compdsite mode
h 10 km, consisting of separate portions of characteristic curves. This
was first discovered by Press and Harkrider (1962} and Pfeffer and
Zarichny (1963). It is possible that each characteristic curve with
decrease of period becomes for a time 'a part of this complex curve, =0
that with further decrease of period to withdraw from it toc the left and
toward the limit h =>€Hmin. At least for those characteristic curves,
for which we carried out calculations, the following regularity defines-
itself. For portions of characteristic curves, which make up the compo-
site curve, the corresponding natural oscillations are concentrated in the
lower wave guide. When the characteristie curve with decrease of period
withdraws to the left, the energy passes into upper wave guide and remains
there with further decrease of period. Let us take, for instance,
Fig. 5.10a and 5.10b (examples 24 and 25). They appear. absolutely iden-
tical, whereas the first one pertains to mode 1, and the second to mode 2.
But the first one corresponds to slightly higher period, when mode 1 was
s5ti11 the parf of the cémplex mode h =10 km, buﬁ in the second case,
for slightly smaller period, the modes have shifted: mode 1 moved away
to the left, and was replaced by mode 2. The fundamental function 1l?

now has one more mode, whereas the energy curve looks the same.
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Fig. 5.10. Distribution of energy in height. Examples 24(a),
25(b), 26{c), 27(d).

73 | !
10 30 §0 70 S0 110
Fig. S5.11. Distribution of energy in height. Examples
19(a), 20(b), 21(c), 22(d4}, 23(e),

For comparison it is shown in Fig. 5.10c, what happens with

oscillations of mode 1, when the characteristic curve withdraws to the

1eft. We see, that the energy has begun passing into the upper wave
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guide, With further decrease of périod it will completely pass into

the upper wave guide, but it is not shown here. From Fig. 5.10d it

caﬁ be seen, how the energy of mode 2 oscillations appeared prior to
characteristic curve becoming a part of composite mode h ==10 km. The
energy was also concentrated .in the upper wave guide. Therefore, with
decrease of period, when this curve became a part of complex curve, energy

passes into the lower wave guide.

Fig. 5.11 shows a series of curves, corresponding to examples
19~2%. Here, the calculation is of waves of the same length, but diff~
erent modes, starting from mode o and ending Qith mode 4. There is an
interesting alternation of wave guides with the increasing number of mode

the number of energy peaks, naturally, increases also.

The complex mode h 10 km, corresponding to waves with highest
group velocity of propagation, plays, apparently, the most significant

role in wave propagation from high intensity disturbances,

Wave guide properties of laminated atmosphere in respect of
acoustical waves were investigated in the well known book of L.M. Brek-
hovekikh (1957), Yu. Gazaryan {1961) investigated them for acoustical
gravitational waves, but his results are very sketchy. Once more we
mention the work of Press and Harkrider and Pfeffer and Zarichny.

Interesting observation material is given in the work of Diamond, (1963).
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CHAPTER - 6.

EXPANSION ACCORDING NATURAL OSCILLATIONS

1. TWO-FOLD COMPLETENESS OF EIGEN FUNCTIONS:

In preceding Chapters determination was made of all the
natural oscillations of athosphere and some of their properties were
investigated. Most frequently, these natural oscillations have interest
not as themselves, but as those elementary solutions, which make
up any transitory solutions of & system of equations in hydrodynamics.
In this Chapter we shall deal with questions, related to the
possibility of such expansion, with formulas, which permit the
effective calculation of the factors of expansion. The most
significant in this case will be the energy ratios, determined in

the preceding Chapter,.

We shall be interested now in motions of not very large
scales of time and space in connectioﬁ with the application of the
theory (in the next Chapter) to the study of disturbance propagation
from instanteneoﬁs point source. Because of this it is possible
without any detriment to analyse the model of atmosphere above the
non-rotatory earth. If in the main system (1.1') - (1.5') the
Coriolis terms and discarded, it will be easy to see, that further
elimination of unknown guantities and reduction of system to one
equation can be carried out generally, not taking into account the
dependence on the time of the exponential, i.e., to obtain equation
for divergence containing time derivatives. The equation, as can be

easily checked, will be as follows:
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2
2 de 2 _ -
Xerr = € Xopas - ("_ -Xg) Xy, = CA X - gfAX0. (6 n

z
The equation was found to be of the fourth order in time,

in spite of the fact, that the initial system was of the fifth order.
This equation, therefore, does not contain some of the system's
resolutions; namely, the stationary, independent of time. At the
initial moment four conditions should be preset., The initial
conditions for the function X and its three time derivatives are
expressed through starting conditions of the five initial fields

Uy Vy Wy Py P Thus, for example,

1 1 |
X, = = =— AP - —(P_+ gp ) ‘ (6=2)
t p F: z

Z

Derivatives X & and X are calculated from the general

t ttt

formula

1, =4 (c £ 'g‘P)“ [C f1}z‘ﬁf1"g‘fz i (6-3)

o Fal

where substitution has to be made either of f1 = X, f2 = xtt' :%7= w,

o

~ 1 . \
or f1 = xt‘ f2 = xttt' P = EF(PZ + Bp }. Passing from function X by

replacement of variables to function y, as shown in Chapter 1, we

obtain also the initial conditions:

Y (()0, e, X, 0) = ¥ ((Ps 6, X),
v ( o L1
., @, X, 0y = Y (<p, e, X,
t (2)
T, (¢, & X 0 = Y (g, o, X),
tt (3)
T (s € X, 0) = T7°(, 8, X), (6-4)
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Another result of the non-rotation of the Earth is the
facﬁ, that the sign is not included in the-equations, If o at a
given h is the natural frequency, then also is - 0 . We denote by
3(0", hy; %)} the solution of equation (4=1) for the vertical component
corresponding to parameters ¢ and h. Assuming n to be the number
of the characteristic curve of Laplace's equation

2 2
o a
gn tn + 1)

and j the number of characteristic curve of the equation (4-1), it

is convenient for instance, to number the acoustical curves by

positive numbers, and gravitational by negative, then j = + 1, + 2, ...

The intersection points of characteristic curves of eguations for horizonts
and vertical components will get double numbers n, j. The corresponding

and h we denote by

2 2
h 2= a—n' j
On, 3, 'n, J g (n + 1) ’

and the eigen function by ¥, j(x). The the general solution should be
]

(¥, 8, X, t) =Zeis‘r° P ° (cos®) T, (XX

N,56,J

X (a eic‘ n,jt + b e-io_n, jt), (6.5)
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where the factors a and b should be determined from the initial

conditions. For this we expand the initial functions according to

spherical harmonics

v (¢, 0, X) =Z Yﬁk;eis%nlsl (cos§) (x =o0, 1, 2, 3),
S

after which it will be necessary to find the expansion

fo) _
Yﬂss(X) —ch's'an’j(X),
J

(1) a
YhaS(X) -:E:idn's’an‘j(X),
J

() ey = N 2
Yn’s(X) -Z ( - D'n‘j) cn,s,angj(X)'

3
(3)
Y 2
ey “E (05 )y o gY 500,
3 .

where
G w 8 + b
n,sj n,;s,j n,s,j’
d .- i .(a - b ).
Ny, ) U’n!:} n,s,J n,s.,j
This system separates into two independent systems: with
factors C

ny8,j

(o) =
Yma (x) _z Cn,s, an’j(XL

J
(2 _ 2
Ynss (x) = E - ¢h$j) Cn,s'an,j(X)
b
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and with factors d

n, s, J
1) )
g1l o -Z 4y 5350, 30
j

(2) o : 2 ' '
YH’S x) _Z (- o-n’j) dn's,an'j(X).

We shall teke n and s as fixed, and shall omit these indices. The
systems obtained are absolutely indentical. It is required-to find

factors C_, such, that

j
£ (X) =chY3m’
o3
N2 ., )
g (X) "Z 2 cx 0. (6-6)
i

where f and g are the known functions.

For the existence of such an expansion the significance,
of course, is of the system's completeness of functions Yj(X).
However, the simple completeness is not enough, We must find a
concurrent expansion of two functions f and g with the same factors cj.
The possibility of this type of expansion for any f and g is known as

the double complete system of functions Yj(X) (Keldysh, 1951).

The proof of the two-fold completeness and formulas for
the factors will be given in the next paragraphs, but now we shall

explain the concept of two~fold completeness in a simple particular case.
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Assuming ,3 = const, if we take instead of our more complex a
simple boundary condition on the earth is surface, Y = O, the

matter is quite simple. We can prove in the equation.,

™ . - i} - 5% + 35? (&E + fi&éﬁ_{) Y=0 | (6-7)
o

2 =n (n+ 1)/&2) denote 0-2 + ’5 kag/a-"2 = Jua. Then there
is a classical problem of Schturm-Liuville with natural parameter
and linear boundary conditions. It is known that this problem has
a complete system of eigen functions. But each f;a value is obtained
at two different 0'2 values, since the Pla is expressed through 0_2
fractionally. (Strictly speaking, it is also necessary here to
prove, that the minimum of function 0*2 + ﬁ kag/ 5-2 is less than
the minimum eigen wvalue f;a, otherwise the least eigen values an
will be obtained at complex 0'2 values, whereas, we are interested
only in real values. The corresponding property is known as
"high-intensity damping" and will be proved in the next paragraph).
It is easy to see, that the system of eigen functions, composed of
two similar sets, has a two-fold completeness in the sense of possible
joint expansion of (6-6) for two arbitrary functions. Actually, by
scalar multiplication of both the portions of equality (6-6) by one
of the eigen functions y (x), on the strength of the latter's

orthogonality, we get a system of two eguations with two unknown

factors C

J
(£, LPr) = cr + cr, .

2 2
(g’. g},’r) ="U.rcr -d’r'cr' ,



- 208 -

where (75, is another value of parameter 52. at which we obtain the
same f}& and the same eigen function. TFor the existence of the
required joint expansion it is necessary and sufficient, that all

these systems had a solution. But this is actually so, because all the

g? are distinct one from ancother.

If g? is included.in the marginal condition, then the
situation is considerably more complex. In this case (atlﬁ = const)
the two-fold completeness is proved in the Author's work (1960). It
should be mentioned, that here we do not get any more twice the same
set of eigen functions, but two different complete sets, one of which
corresponds to acoustical, and the other to g?avitational waves. There

is alsc no orthogonality here of eigen functions.

One more thing should be mentioned. Since with 6 the -0
is also an eigen value, the resolution of Koshi problem for the’
equation of fourth order did not require a four-fold completeness of
eigen functions and it was possible to take twice one and the same
two=fold complete set. If we take a model of the rotating earth,
the matter here will be different: for positive and negative ¢ it
would be necessary to take different characteristic curves of the
equation for the horizontal component and, therefore, different eigen
functions. Moreover, there would be an addition of one more set, related
with gravitational gyroscopic waves, in complete accordance with the

system having a fifth time order.

Paras 2-4 contain purely mathematical, slightly abstract and
complex investigation of a two-fold completeness; in superficial reading

these paragraphs may be omitted. The importance for applications is only
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of formulas for expansion factors of para 5 (6.49) - (6,50), which will

be used in the next chapter.

2. PROOF OF COMPLETENESS, BOUNDARY CONDITION Y =

We begin by proving a two-fold completeness of the eigen
functions system fo: a simpler problem with boundary condition on solid
surface Y = O at X = O. The alternation, fixed in Chapter 4, of the
eigen values of both the problems will make it poséible for us in the
next paragraphs to deduce hence the completeness of eigen function for

our more complex problem.

To simplify the demonstration we shall assume the atmosphere
as finite, by placing at a certain height Xo boundary condition
independent of 52, for example Y = ). We shall denote A = 0'2. We
shall reduce the problem now without difficulty to the form applicable

in which are certain known theorems-, which fix the completeness. Let

ug take the operator

2

4 1 2
F=-E;2+(T+Hal_‘;)

in condition ¥ = 0 at X = O and at X = Xo. This is a positively

determined operator, having inverse [&ntegral operator with core, which

is the Green's function of equation - y" + ( + H k,) ‘j We denote
this inverse operator F"q. It is a positive, quite continuous operator.
Therefore, there is operator F_%. We substitute Y = F“%i in equation (6-7)

and to both the portions of this equation we apply operator vk
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0 2
1Y - 2_ E —H- F—yz nu - l- F“‘ya .E—— F-% u = O.
xh 2 X

Here H/) g and ﬂ HkZ/DE - operators of multiplication by
functions H/ » g and ﬁ sz/x. The equation obtained is a particular

case of equation

u=lGu+/Z"1Hu,

where u is vector of Gilbert's space and G and H, positive quite
continuous operators. This type of equation was analysed in the work
of N.G. Askerov, S.G. Krein and G.I., Laptev {(1964); in a more suitable
form for our object it is stated by G. Langer and M.G. Krein (1965),

and also by M.G. Krein and I1.C, Gokhberg (1965).

Ve shall demonstrate that'the‘bunch of operators I - ]G —‘1"1H
(1 - single operator) pertains in our case to highly significant
particular type of bunches, known as highly damped. The bunch isg
denoted as highly damped, if for any vectﬁr 1u there is fulfilment of

inequality

| 4(Gu, uw) (Hu, u) < (u, u)a.

In otlier words, eguation

(uy, u) -~ A (Gu, u) - ﬁr (Hu, u) = 0 (6-9)

as quadratic equation relatively to A at any u has both the radicals
real and different. The term "highly damped bunch" or "highly damped

system" has its origin in mechanics, where these equations actually
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depict systems with high friction, ensuring purely aperiodic damping.

In our case this term is only formal.
If we return from u to y, the equation (6-9) will be

equivalent to equation

5 Y
"= 1 - H [ k \ =

Yy ¥+ - - Hk™ + + ££-167 }yy- dx = 0
T X?( pa

for all functions y(x), which convert into zero at the ends of the
interval. Assuming that at a certain y(x) this equation has
imiaterial radical A = Z,r + 1 ’{i' ’Li # 0, then, by integrating
this eguation by parts, we get

X
<

X
-f/y'/adx+J{.[—%-Hak2+}%(/zr+£,;—jsg—r)1y]2dx+

o
XO
*iixiz H(-%f-g—iyladx=o. (6-10)
>

The real and imaginary parts should individually be equal to zero

X
o

S " ( - 521:25 (] 2 4x = O e (6-11)
© .
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and

X X
o

o : '
' 2 28
,y'l 2ax = -E [- -}r - 8% + -5%- (lr + %‘—iﬂi’j‘y!adx. (6=12)
8 o | 2

The same equalities hold true, if there is a real
multiple radical. Now we bring into analysis energy integral. We

denote E = Eh + Ev’ where

X‘? ¢ 2 ‘
E-r = ka ‘ H Z_y + g (y' - é% i) dx, (6-13)
o - '
X
[
EB = - Zy' + (gkaH - —g'-') y !2 dx. (6-14)
o

These formulas have the same appearance, as the formulas for
horizontal and vertical energy in the preceding chapter, but this
time they are written for complex:,l and y functions. Besides, the
latter are not assumed to be resolutions of equation, Next follows
the conversion, similar to the one carried out in the proving of

the theorem- of virial
X

oo ([ ] s G- ) 556 1o 8) Ty
slmh - -g-lalyl : }dx‘

o L
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 Using for the substitution of the first term formula (6-12),
replacing £ in the second and third term by tl-r + 1 Z'i and

integrating by parts the portion containing l-r' we get.

2 ° 21992, 1/ 8 52 g |
Er = k g H IZ' + ol 28 + éw - i % -
o

X
[a]
2 2 ' '
- 52};2 ]y] adx + i —x-ﬁ-}-i-{ﬂ J H(y y - yj)dx.
0

If we remember, that ﬁ = (M- 1)g + )CgH.?'_, the term in
round brackets becomes considerably simpler and after certain

calculations we shall get.

xO
E, = kaj B2 ( 11{2 - gaka) (1 - iH—jx‘%E) Iy[ 23% +
[v]
X
2k2 1 A ‘
.y e i EGy-35% ax.
)Z]
o]

Exactly the same conversions we carry out in respect of

Ev‘ Without bringing forward calculations, we write the result,

% 22 2. {22 AcE 2
EB = J‘ (g - u} ) sz - "-""g'_ ’3'1 aX +
o]

X
©
K22 A

e LA R

Q
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By adding both the formulas we get.

-2 x
E = Ll_ril.’g-— J2f ® A J'° H ([1}2 - p e [y ‘it (615

The left portion is always positive. Therefore, the
right portion algo c¢annot be converted into zero, which contradicts

assumption (6-11). Thus 2ll the 2. radicals are real and different.

It is already clear, that our problem or its equivalent
problem (6.8) can have only real eigen values, since if the (6.8)
is fulfilled, then it is even more so with (6.9). In Krein and
Gokhberg book (p. 366-367) the following assertion is given: "For
highly damped systems (6.8), where G and H are positive quite
continuous operators, the theorem helds true of the two-fold
" gompleteness of the natural vectors system. Moreover, the system
of natural vectors consiste of two total bases. One of them

3]

U2 ¢
corresponds to monotonously increasing succession of eigen valueslff%L<'“

for which the following relation is heing fulfilled

X
o]

j H(Aa-ﬁgk‘?)/y!aax>o (6«16)
p ,

(our denotations), i.e., they are the bigger radicals of the
corresponding quadratic equations (6-10) (at' A = ‘Zr’ ‘li = 0)s The

other corresponds to monotonously decreasing succession of eigen

values A (1.2_) >l(g) ™~ l(? >  «es, for which

X . |
J H ( [Ua:n ﬁgkaJ/,)”[adx < o, (6-16")
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i.e., they are the least radicals of quadratic eguations™.

On the strength of relation (6-15) conditions (6-16) and (6-16'-
could be substituted by the following. For eigen functions of the |
first kind A > gk, and of the second kind A < gk. In other words,
in the first case the frequencies are higher than Peckeris frequencies,
corresponding to k, and in the second case lower. The first set
pertéins to acoustical waves, and the seconq;;ravitational(somewhat
conventionally, because so far we are analysing the simplified
boundary conditions). The Peckeris fregquencies divide the
acoustical and the gravitational waves; the acoustical set of

resolutions and the gravitational set form each separately total

space basis.

This basis is not orthogonal, But it is the so called
Riss basis (see Krein and Gohberg, p. 373), i.e., a basis obtainable ‘
from the ortho fixed by application of limited and reversible-limited

operator.

3. AUXILIARY FORMULAS AND ASYMPTOTIC EVALUATIONS:

We change~-over to proving the coﬁpleteness of eigen
functions at real marginal condition, dependent on eigen value.
Let us recall the curves in chapter 4 of functions M(A ) and N( A ),
They are reprecduced in Fig: 6-1, At the intersection of both the
curves we obtain natural frequencies. Frequencies of acoustical
waves Xk (= qf) we nunbered X = 1, 2, 3, +.., and of gravitational
waves = = 1, = 2, =3, ..e By’,&; we denoted natural . frequencies

of investigated problem with marginal condition y(0) = 0. Ae shown
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in chapter 4, eigen values of both the problems are intermittent, as
[ 3

shown in the figure. Thus, between the numbers 2;,and Ear it is

possible to fix reciprocally unambiguous correspondence, shown in

the figure.

Fig: 6-1 - Eigen values of two marginal
problems.

In the next paragraph it will be shown, how, using this
correspondence, to re-expand functions, expanded by system {y;'ﬁ s
by systenm {xx} ; thereby fixing the completeness of the latter.
With this object we shall require primarily asymptotic evaluations
of eigen values and eigen functions of high numbers, assuring
convergence of those series, which will be encountered, and also some

auxiliary functions.

At A—>00, i.e., in the case of acoustical waves, the
equation could be asymptbtically written as

H

= 0.
X g A ¥

yll +
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-

Substitution of g =

L
"mx, ¥y = VJEg/Hﬁreduces

[s ey b

this equation to » "+ py * A % = O, where p is a certain function.

At high 2] this is equivalent to -;?" + 2.7? = 0, whence we get

4 "o
/ r i
y,:,\ 3%-3 sin‘lff j ”'V'-—- dxXe
x

H
~£2

In the obvious way we obtain the asymptotic evaluations
(letter K marks different constants)

X
0 e
2.2 i '
" wE H i - N -
,{xm_/ ——, (2= gz O j o x=1, 2, 90, (6-17)
O /
¥ - T
0< - & —— (6=18)
f..“ ,2“ <2
X
[s]
,
K (y)% ax < K, (6-19)
[o]
X
(o]
.2 2 - .2
H - ~K -
j [()_“) 51{3] (y«) dx (l“) . (6-20)
[+]

Y (0) ~—K, /:{:' (o)/ < Ky o (6-21)
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In the same way we obtain evaluatlons at 4 — 0 in the
case of gravitational waves. The equation becomes simplified and

appears as

2
"o+ Bf k- y =0,
x 2
whence
4 - xo . 5
X sin 1 ' \j H'sk dx
y(-‘\_/ —'—-— —————————
Hjﬁ k" YA Xx.
x
and
X
O ‘.v
2 . 2
12,:“-‘-27-2; b = ‘ —H&-dx ,Of= hend 1, -2’ seay
LS a7 Vo=
[

o <d, - A< x()"

.2
K, < (%K) dx << Ky,

[~}

X
[a]
*.2 2 7,2
H (2 ) «hk (y )° dx ~— K,
i [ 'Za ﬁ g‘J i

K !tl
0 i
y ()"dvly“

; (o)/<  Ky «

(6-22)

(6-23)

(6-24)

(6-25)

(6-26)
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We bring-in some integral relations. The eigen

functions meet equations

2 b}
. { NECCIN § Z - ﬁ_;_ﬁ)j y, = O (6-27)

" xE
i

on condition

2
y' (0) [H(O) k" %.J y (0) =0 (6-28)
[ 4 2« V] )

and equations

*u 122 H [(>* Pk . - .
yr + { - T - H'k +‘X—é (7‘,‘{ + TE> y“ = 0 ' (6 29)
)
on condition
y (0) = O, | (6-30)

*
Multiplying (6-27) by y? (x), and (6-29) by xx(x),
substracting from the first product the second and integrating

with an estimate of boundary conditions, we get.

-ziﬁ XO * * L3 ]
_ZL.__.Y.,.. H (/Z 2 -ﬁkag) yy dax =y (0) vy (0) (6~31)
i e § . o
L&A LT
0

In the same way, but using only (6-27) or (6-29), we shall

¥ * 2 | *
- R x%g) dx = 0, -
g Hi&ﬁiy pue) y vy ax o £y (6-32)
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and

%o
S H(%XZT‘F kag) Y yi dx = H(O)gakaq* (0) 3? 0),x#y - (6-33)
o

Let us recall a formula, which was obtained somewhat

more generally in the preceding paragraph

X
o]
* 2 2 * _*
j H[(,{m) -ﬁ ng(yﬁ) dx = Xgk,
o

*

*
- 2 E
E = LI E:&>0. (6-34)
£(l“)2_32k2.]

k, THE PROOF OF COMPLETENESS: THE REAL MARGINAL CONDITION:

L
The - two=fold completeness of the system of functions {? j.is

fixed. Therefore, for any two functions f1 and 12 there exists an

Ny
* *
- N1

N,

approximation

) v " * *
faN-L‘ CY )_,T yY ' (6~35)
;N1
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as accurate as required at sufficiently high N'I' In particular,

taking as two such functions yx and -Zo{ ¥x » we shall get

N
1
N,
_ A * (N)
3'0{ = i f"“!‘ Y‘{ + VR
y=-n
N .
Y 7 * [ (N)
- = £ S+ 8, (_~36)
AT 5 L3 )“y v
y= - N
where 1:N) and %:N) are residual terms:
- N =1
foe
N N e v
r = [
[ E Mr Ty {
N+ 1
-N-1
<
(N) . - ] * *
5 = - Y £ - t )y (6-37)
x / wrzyyr E oq)xr

(In each of the written sums ) takes on all the indicated values,
except y = O, to which none of the eigen functions correspond).
Assuming we shall be able to find matrix/fhg;) // HN inverse to

matrix /l fﬁy/fr-!N. Then



- 222 -

N N

y" - p 0 h(N) (N)

Y T Yo Y & '

of = = K= = N
N N

* . (N2 ; (N) (N)
- = - h ) - ) - S (6-38)
ZT YH o @ Yo Yoo K ?

M= - N K= = N

Further, the problem will be to prove, that in these
formulas the residual terms (second terms of right-hand portions)
could be made as low as desired at sufficiently high N. Then
 substituting hence the term for 5: and - ,Z; y; in (6-35), we

shall get the following approximation:

N
T
f‘TH Co‘ %‘,
o= = N
N
faw-z ’ G Ay 3 (6=39)
X=<-N |

3 N1
AN (N) *.
c, = ham cr,r
¥= - N

The accuracy could be made as high as desired, if first N,

is made sufficiently high, and then N,
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Thus, it is required: a) to find the factors %KY and to
evaluate them, b) to evaluate fhe residual terms (6-37), c¢) to calculate
the elements of the inverse matrix h;;) and to evaluate them and d) to
give evaluation to residual terms in formula (6-38), from which it would
be evident, that at fixed Yy they strive to zero at N—o00 , Evaluations
which should be carried out, involves rather bulky calculations.

We shall omit the details, which, anyhow, it is not hard to restore

every time, using evaluations of the preceding paragraph.

In order to find the factors fN)" we multiply both the
]
portions of the first of equations (6-36) by H ﬂ kzgy; , of the
* » ' -
second by le - add and integrate by x {y =~ certain fixed value

of index ) ). Formula (6-32) will give in this case

X
o

S H(Xo{l-;; -/gkag) Ty yi: dx =

[+ ]
X
0
* - 2 " W -—
=1~ H (2~ —Bkg) ymy-dx, X .
Mg A, A B x%g yry-ax, KAy
[o]

Recalling (6-31), it is possible to obtain

Xg L 2y (0) . {0)
£ = X ¥ ¥ LS (6~40)
®Y X
A~ A aQl A 2y oy
(A= Ay gH y Y-ﬁkgyr;s‘r{dx
Q

taking into account besides (6-34), we get
* (0 * (O
_ Ag Pt Y0 Yy

£ " (6=41)
T (2--Ap By
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Formula (6-40) permits giving the following evaluation,

if we also take into account (6-20), (6-21), (6-25) and (6-26)

-2
s Fx >0, Y>>0
{n}“ - Y ‘
Y
Ty -
’ ]\ : o;.]ma - 1(2! afto{4o, y< o (6-42)
X1 of x>0, y<o
1 x
53?3:?- ﬁlf < 0 Y >o0..

Now we resolve problem "b" - evaluation of residual terms
in (6-37). We shall evaluate integrals of the squares of these
terms. Functions %; (y >0) are asymptotically orthogonal
(with H weight), whereas, the integrals of their squares are
confined within & constant range/formula (6-19)/; exactly the same is the
case with g < 0. Therefore, the square integral of residual

terms gets evaluated by the squares sum of expansion factors by
*
Y H

Y
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%o — '%: 1
(N) PR 2 ” 2
S )V J aX L for;' + L_, fOfT ’
[} 'a’:N + 1 y= =00
X - N -1
0 oo
M 2 00N 4% L2 N j2 2
j [;« x~) (2‘7) £, +LJ(,{¥ ey (6-43)
[s] ,):N + 1 ‘Y:': . OO

Let us evaluate, for instance, S;N) at v > 0

wh ol
j[m,} ax "'X “22*
o =N+1 I(“"T)
‘-\N-'I o
2
-1-2-<ch : ! ~K x_dx -
/ Y / (o-;—[) (= - K7
‘{—-OO fN+1 N+ 1
oo
2
=K0{3 x dx <Ko<3 N+1_1-1.
(x 1)
N + 1
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Similarly the evaluation is carried out of this
residual term ate& < O, as well as of the second residual

term, Here is the result of evaluation.

-1
N + 1
Ko(3<‘“r"9 y X >0

X X
¢} [o)
S [s“”j] 24x, j E-,‘“ﬂ 2ax < (6-bt)
& [ .
o] 0

KK—B (N ;‘1 _ 9-1’“< o

Now we proceed to resclving problem "c".~ finding of

inverse matrix. Using formula (6-41) we calculate the determinant

of matrix /f fa(y // N?N

N

[_] * *
0(; - N y“(O) u (0))\“ lza‘
det ﬁﬂ =

Y det -(R“- 7\:) -1

The remaining determinant is calculated very simply

see,[?or instance, the well known book of Polia and Sega (195?5}

We have
N
I Ym(O) "'g:' (o)f(p(,l;
!det fMI= = o g
“(;Z X A0 (A xr)ag(x“ -x,,))

4
I<«
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The determinant is distinct from zero. In order to
find the element h(N) , it is necessary to calculate the minor
(i.e., determinant of the same type, composed of the same elements,
but with omitted elements of the ¢ - th-line and y -th column) and

then to divide it by the whole determinant. We find.

N

Ih(ml / 2" T Gex) i’:-lx x

" 72‘« 7‘2(0’ % © | 1o w2 '21)(*1“ )‘.1)

X' @ 2) (0 22) (3 1))
(- 24) @- %)

] 0(!‘{-

Now we evaluate h(rN“) at fixed y by Nand o « We

take the multiple

N Sl e N N

ﬂ (A= A1) (2, = 2)) _ H .. Ay -2 Ay =2 e
- (A= 23 (2, = 2D . (= &) (2, -4)
1?‘0";}’ | 1#“'),

We analyse first & negative. The product we divide
into two parts -~ for positive and negative 1. TFor the first of these

parts the fraction is evaluated as 0(1—3) if we use the corresponding
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asymptotic formulas (6-17) - (6-26). Thus, this portion of the
product is limited by the abmolute cons'tant. Limited in the same
way is the second portion of product, for negative 1, In fact, for the

negative 1 the evaluation is as follows:

-~

-1 o= 1
-

2
K B
, I 1 + _ exp K E < K.
= wgX+ 1 Iu§—12’1§>< 1T =1 }aa- 12] ZI.}T

Now let & be positive. The evaluation will be slightly

more difficult. Part of the product, corresponding to negative 1, is
-1
limited, since it can be evaluated in the following way: [} [1 + O(I-l'tjc:l(.
-N

But with positive 1 we have

N N
o2 o '
K H 1 + '-'-T——-—Z— o~ K exp 5 P
1(1°- <) : Z I (1% - &%)
1=1 1=1 .
1K 1# o
. . 1 “2 N + 1 ,
exp (1n plr- PR
b 1
1 o
+ 1n ~—— K (-X- 1 - I

Let us sum up. With negative & multiplier (6-45) is limited,

with positive X it does not exceed Ky -1 '\/1 - &/( + 1), The

remaining multipliers are evaluated quite simply. At®>>0 we have
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2,4

T_—I< K, 70;——?—45—,
A | M
whereas at o < O
'),-2‘ Z-Z*
-1-"1-—!- < K, || S
““lr 2’“"/.{{ “,

Finally, we estimate the remaining multiplier
1 < K
e 100 | &2
o I
at 8 > O and the multiplier

/*—""‘zvr} < Ko
)“0( Ve

at X < 0. Combining all evaluations, we get ato > @

/h";){ < K 1. 2 (6-46)
r N + 1

and at X < 6

/h(N)} < g . (6=47)
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It remains to resolve problem *d", j.e., to evaluate

(W) and for %;ﬂ)

residual terms in formula (6-38). Since for r
there are similar evaluations, then, apparently, it is required

to evaluate the sums.

N -1
E h(N) r(N) , _S_ h(N) 'r(N) ’
o= 1 K= - N

For this object we use (6-4h4), (6-46), (6~47):

f (ihm) (N))adﬁg 3 (N) VI( (N) 2

«

The residual tebms actually sipite.to zero, wilch proves

the theorem,
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5. EXPANSION FORMULAS:

Thus, we have proved the two-fold completeness of the
system of functions, iee.y, the possibility of approximating (6-39)
for any wo functions at any preset accuracy. But 8o far it does
not follow from anywhere, that any two functions could be expanded
into series by yx . 1In other words, would not it happen, that
for rising the accuracy of the approximation it would be necessary
each time to take absolutely new linear combiuations in the |
right-hand portions of (6-39). Now we shall demonstrate, how
to calculate effectively factors Cx +» It will be found, that
factors €, are independent of N, but depend only on « , and this

terminates the proving of expandability into series.

To calculate factors ¢y 4 we multiply both the
portions of the first of equations (6-39) by H f kagy}, ., the
'set':ond of these equations by HZ’)’:’? » add them up and integrate
by x. To sum obtained we add the first of the'equations, taken
at x = 0 and multiplied by HfH(O)gakayy- (O). Considering the

integral relation (6-33), we get

X
o

J’ H (ﬁ kzgfl +A’.),f2) jrdx + X H{O)gakafl(())yf (0) =

o

xo

- g (27 -B i) 32 v ax +XH(0)g%k 2;-’ (0)a

o

v (6-48)



- 232 -

This equation could be transformed, recalling the formula

deduced in chapter 5, for the sum of horizontal and vertical energy.

: X
0
R Rt [T

Q

- X H(O)gakzyz(o)

Then the formula for the factors could be rewritten in

this way:

X ' g
0 2 2 2
s‘ " (ﬁ k“g?t, +Zr £5) ¥, ax + X H(0)g%k"T, (0) y, (0)

o

c pum oA - (6-14'9)
2 7y 2 2
- A+ (Zr - gzk)

It would be expedient also to recall, that E_, is actually

Y

energy with accuracy upto multiple. If the true energy value is

]
denoted by Egy (see end para 1 of chapter 5), then we get

) 4 ?odﬁ?
= B
r 4
a(a-l* _ g2k2>2
Y
and
xo
2 2 2 2 O
X Po S‘ H(ﬁvk gf, + g-r fa) 3} dx f" H{0)g“k fl(c). y‘.’,(ng
(]

Y - . (6-50)
- g - G
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The factors, as stated, are independent of N.

We make one more remarks. We analysed the problem for
the sake of simplicity at the end segment [0, X, ] + In this
case the & value, equal to gk, i.e., the Peckeris value ceages
to be the exact eigen value. Ther§ is appearance of ’Zo’ near,
but not equal to gk. The system completeness of eigen functions
takes place, as demonstrated, without the estimate of this eigen
.value, i.e., the latter seems to be unnecessary, But at the same
time formula (6-48) gives for factor C_, as well as for the other
factors, value, generally speaking, distinct from zero. Is this

net a contradiction?

The answer to this question is the fact, that in
deduction of formula (6-48) we assumed not only the system
completeness of the functions, but also that the arbitrary pairs
of functions counld be approximate& not only in mean square, but
also at X = O. With this the system y, at o # 0 is found to
be insufficient, and it is necessary to take into_account function
Yo also. The position here is quite similar to that, which takes

place in the following example.

Let us take two systems of functions at segment [0, ?f],
namely, the system {sin (n - %—) (’JT - x)} and the system
{sin n(x -« W« )} s, D =1, 2, see Both the systems ére
complete in mean square. But any continuous function, equal to
zero at x = VU , could be e#panded in uniformly converging series

according the first system. But from the second system the expansion
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is only of those functions, which convert into zero also at X = 0.
To make it possible from the second system to expand into uniformly
converging series the same functions, as from the first, it should

have an addition of one more function, for instance sin é% (& - X).

Exactly the same position is in our case. For a uniform
convergence, and therefore, also for the accuracy of formulas (6-48-6-50)
it is necessary to estimate also R But what will happen if we change
over té the precise case of semi-straight line [@,00'] ? Here the
position changes. Formula (6-49) at y = O loses its meaning, there
is an appearance in it of uncertainty, as 2,0 = gk, Eo = 0, But it
is possible to use the initial formula (6-48), The factor at C_ in
the right portion is, generallﬁ speaking, distinct from zero; as
regards the left portion, then it is equal to zmerc at arbitrary
initial conditions. This at the beginning seems strange, since,
into indicated formula enter arbitrary functions fl and f2. Actually,
these functions arbitrary are not but the initial fields u, v, wy D, P

through which these functions are expressed by formulas (6-2) and

(6-3).

It fl and f2

the left portion of (6~-48) and pertinent damping is assumed of initial

s+ expressed by these formulas, are substituted in

fields with height (finiteness of energy), we shall get eqﬁality to
zero Qf this left portion, i.e.y of factor Co' Thus, actually, the
Peckeris sigen function does not enter into expansion. If the semi-
straight line [O, ao_']:is substituted by segment [o, xo] , then

it will enter into the expansion, but with very low weipght, as these
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problems are similar.

This statement conforms to the remark made in Chapter 1,
in regard to the fact that Peckeris waves carry infinite energy
and, therefore, cannot enter into conposition of real solution

with finite energy.

We must recall again, that if the solution is expanded
in eigen values, then its corresponding energy ig the sum of
energies of the component oscillations, in sccordance with additive

energy, proved in Chapter 3.
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CHAPTER ~ 7

PROPAGATION OF DISTURBANCE FROM INSTANTENEOUS POINT SOURCE:

(1) PROPAGATION VELOCITY OF DISTURBANCE:

In preceding chapters the investigation was of periodically
time dependent solutions, having the shape of global waves. Thersby
it was assumed, that from the excitation moment of this wave there is

a sufficiently long time interval, so that the wave gets fixed,

The study of these waves is interesting, when we are dealing
with sufficiently strong disturbances, as are able to encircle the globe
eeveral times without losing considerable part of their energy. This
condition is fully met by the large scale waves, of the type of Eosabi
waves, and also acoustical gravitational waves, evident as a result of
particularly strong disturbances of the atmosphere, such, ag for
instance, the famous explosion of Karakatau volcano and the explosions
in the tests of nuclear arms. ﬁere, the waves are mainly of
two-dimensional type, corresponding to h = 10 km, propagating without

dispersion with velocity about 300 m/sec.

However, wave resolutions permit the solution of other class of
problems also - problems of transient oscillations, since any transient
resolution could be expanded from the wave resolutions. Local disturbance
of the atmosphere e#cites a wide spectrum of waves. The resolution
represents superposition of these waves. Hence, these waves diverge
with different velocity due to dispersion. We know that phase and,

specially, group velocities of acoustical waves are considerably higher

than those gravitational of waves, Therefore, the acoustical wvaves, As

T N v

may be expected, diverge considerably faster than the gravitational waves.

R

-
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Sometimes after the passage of wave front there should remain mainly

the gravitational component.

In the first paragraphs we shall analyse a model of the flat
earth and the discussion will be confined to the gimplest case,
admitting analytical solution, - the case of isothermal stratification.
Our first problem will be to find the solution in the case, when tpe
initial disturbance is of point-type shaped, i.e., to find the function
of Kosh problem effect. Hence, we will have to divide this resolution
into parts, corresponding to acoustical and gravitational waves, and,
finally, to investigate the time behavior of these parts, it is at
t oo o The asymptotic formulas obtained will actually show
considerably higher damping of the acoustical part as compared with

that of the gravitational,

The results will also be given &f numerical calculations, carried
out by Romanova (1966). It will be found that asymptotic formulas at
t ©o depict quite well (atleast qualitatively) resolutions for
comparatively low t values. In the last paragraph we shall discuss the

case of the gpherical earth and the real stratification.

Let us take the system familiar to us, of equations in Cartesian

coordinates
du 1 3p
t T . or * 1T
P
av _ 1 3p
3T = —--_,_D P lu,
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®p __= (au B 2wy -V

‘at=-P, ax""ay""az 4z
—%—-{’—-:-C%; (g; 1“"3; + '%'M; )'I' gi')w. (7.1)

Here )\ - formal factor, equals to one, It is brought in in order
to see, how the results change in quasistatic approximation ( A= 0).
In this paragraph we shall assume A = 1. We are dealing now with Kosh
problem, i.e., assume, that at t = O, the values of all the functions
are known. We must first mention that the resolution of Kosh problem
is unique and, moreover, it is poseible to indicate the zone of initial
data effect. We prove this by means of energy integrals. For each
point of four-dimensional space (t, x, y, z) it is poesible to plot a
characteristic cone with apex at this point, resting on a certain closed
zone of three—dimensional space (x ¥y, z) at t = O, At each surface

point of this cone the perpendicular meets the condition

2 2 2 s 2
i - F (nx % ng + nz) = 0. (7.2)

Now we take the relation familiar to us for energy

2 2 2
D | = u” + v o+ W 1 2 2o 42
=15 + ) p© o+ £~ (p - C°F )] +
+ 2 () 4 e (pv) ¢ =2 (pw) = 0 (7.3)

We integrate thig relation by volume, limited by the characteristic
cone with the apex at point (to' Xy T zo) and hyperplanes t = O, aﬁd
t =t —-é. The left portion of relation (7.3) has the aapect of
four-dimensional divergence, therefore, the integral on four-dimensional
volume could be substituted by the integral on its three~dimensional

surface, This integral on top base 0



. 2 2 2
Eezgxgi; u+v2+w + — [pa-b—g—(p-cap)a:[ X
2Apf

X dxdy dz, t =t - s

integral on bottom base Oo

E = g g | o u2 4+ va + ¢02 + 1 2
I T P 2 2%p P+

%

+-—§-—(p-6'?'o )?] d xdydz, t =20

and on lateral surface ©

. | 2 2 2
- ‘ 1
S=&gg {pu e de-r o (p2+-§-(p-c"’%: )2)]nt+
3 |

+ (pu) n, + (pv) ne + (pw) nz‘s dc

We evaluate the last three terms of the integrand function,
using (7.2), inequality of Koshi-Bunyakovskii and the fact that the
average geometrical of two quantities does not exceed their arithmetic

average

\(pu) n, + (pv) m, + (pw) nz\é;

é; pw/ u2 + Va +‘*’2 I/ nax + n2 + na = p}/-ua + va +~ur2 £ =
J & C
' e | 2 2 2 .2
= (o 2 2 ) - ut +v" +w W
= ]/‘ P (u +ve+w)n L + P n
Kv— u? + v° + 1 a“
= P 2 — nto

2p -
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But the first term of integrand function is positive, therefore,

the whole integral is positive, S O, since the element of volume d

is positive. Fronm

it follows that
OéﬁéE&

In other words, theenergy in region 0. is lower than the enérgy
in region Oo. Thus, the energy may only issue from the characteristic
cbne, but not to flow-in. If it is assumed, that all initial data in
the zone 0o were identically equal to zero, than also Eb = 0, and all
the functions u, v, w, p, p-c% are squal to zerc in zone Os s and

due to arbitrary - also throughout the cone.

In the case of constant c, i.e., in the case of isothermy, the
¢ repregents maximum propagation velocity of disturbance, i.e.,velocity

of disturbance front motion,

(2) FUNCTION OF KOSHI PROBLEM EFFECT:

We shall now assume ¢ = const, and convert the system in the same
way as in Monin and Obukhov work (1958), With this object we bring in
ney unknown quantities pu = Px " ¥y? Vo= efy + ¥y o = X. Then

it is easy to obtain for and equations

29

ot

-p+1ly,

$
ot

1}

- 19,
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If now P,p and ¥ are now excluded, the following pystem will

be obtained for X and ¥ 3

2 2 32
—%?+I§CP = (x = 1) gX+02—-%-§—+CZA(?, (ﬂ=%§'+—a—29,

¥
2 3
A gt’; - az {(;:-1) gx+ca—%1;—-+caﬁﬂ +g[—%-’-;-’;+ﬁ“?]-(7-‘+)

In the starting unknown quantities at t = 0, for initial system

were oy o Pos Xov o P then for (7.4) the starting data will be
= __aﬁ__ltp - P X=X X..il{'...__(_?.f.?..'. D (7.5)
= © T3t ) o! - Yo at = Q2 EPyf» Mo

System (7.4) has not the fifth, but the fourth time order. By
solving it we find the remaining unknown quantities by means of one
more time integration. Since the order of the system has decreased,
then it naturally, has less solutions. Namely, if the starting data of

initial system satiefied condition

: - P
. QFO l‘PO-Po xo gzo +gP° 0, (7.6)

then for the new system (7.4) there will be zero starting conditions,
and the solution will be identically equal to zZero. However, the
whole solution cannot be zero. It will be stationary, independent of
time, and conditions (7.6) will be implementing identically (this is
the condition of horizontal motion, solenoidality, geostrophicity and
gondition of quasi—statics). Stationary solutions correspond fully in

the model of flat earth to inertia-gyroscopic waves, known to us.

At ?\: 0, iss, in condition of quasistatics, in the left portion

of the second (7.4) equation instead of aax/clt2 will be found zero.
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The time order of the system will decrease to the second.

Now we exclude from the system the unknown § . We shall get

2
(g 5 + 15 (Caxzz + ngz - xtt) +A[ {x = 1) gax + lcaxt;] = Os
t

(7.7}

In this case the gtarting conditions will be the following

X= ;co, = Xey = Xo0 Xppy = X3 t = 0, (7.8)
where
3P (r 2 _® t)
1x1=~<—55——+gp°,1x2= g+ C° —=s)AP +

2 ( 2 2
+ 5% xg + C 3% xo,

2 _ 9 ' . 2 9
A= (50 @ 2B b, =) + =2 (xg v 0 20 x,.
After X will be found as a result of solving equation (7.7) with the
starting conditions (7.8), it will be possible to find s by solving
the first of (7.4) equations -~ Klein-Gordon type of equation. It
should be mentioned, that a case is possible, when X= 0, and< % 0.
dp

: . . . ‘ — 0
This will take place, if at the starting moment xo__.o, a3z * Sf’oz;
=0, i.0e¢y there is no vertical velocity and the fulfilment is of
static equilibrium condition, and the % o and 1@'0 - Po ar; distinct

from zero, but quite definitely depend on height as G-gz/c e« Then

also

.
(X, ¥y B, t) ,“gz/"a ¢ X, ¥, t),

FaN
vhere function P satisfieg the equation
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2 . o~
(—g—g- + l2 - 02-&> T = 0.
& i

This is & two-dimensional solution, corresponding to Lamb's waves.

Now we shall speak only about the solution of equation (7.7)
for function X. It does not'depict anymore either the inertia-gyroscopic
wave, or the Lamb's waves. We carry out the usual substitution of

variables, which destroys the term with the first derivative

after which the equation will be
: 2.2
g* A f2 x“g"
.2 1> G Wz = T2 T ‘lﬂt{) *

-I-AK (x = 1) garﬂ +.:\C2"\1\ ttl-\ = Ca (7.9)

L

The marginal conditions are as follows: on the earth's surface,
at z = 0, it is assumed V)= O, and at infinity the condition is taken

of 1 limitings The starting conditions at t = 0, are the following:

..’EE_ Z ""-E'—x 2

M=, <= eaca XD' M = M (-“- eaca xD,

2B, —XE
= = eac .4 = <— 202 X
Bet = ma2 \ 7 2)* ottt T 43 ° 3

Now we have a differential equation with constant factors and
the starting conditions, The problem could be solved by means of
Furier's conversion from variables x, y and Laplace's conversion by t,
gince the solution is being sought for on the semisxis t 20 at
starting conditions. First we ghall carry out Furier's conversion of

the sought for function and of the starting conditions:
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'ﬂ(x' ¥y 2y t) = :%'}é"‘" gg ci (k‘lx + kEy)"rT (k1, k2’ x, t) dk'l dka,

M, (% ¥y 2, t)=:§§-—g& ol (Bg® * X005 iy, Ky, %, 8) dkdk,

The equation will hecome
2 2 2 o ‘) _
W zz — 2 it

‘ 2
- k'g‘. (x = g) £ M+ }\ﬁtt] = 0. (7.10)

C

After this we shall carry out Laplace's conversion by t. For
this both the portions of equation (7.70) we multiply by Pt ang

integrate by t from O to s denoting,
oo

i - -
“q(k‘l’ kag Z, _p) 2S -] pt-‘] {k,]’ ka, Z’ t) dt.
0

Then we shall get

2 o~
(12.,.p2) (,’-“z .__Erfn ___-P.__n])_k{(x-:éﬂg +1p«qj=

Cc
(7.11)

where the right portion r emerges with integration by parts from

initial conditions

22 3,2
- - 2 - -
r = (aqlpg * P (Mo),, = ('—E‘gr o )\22> (M1 + Pyo) =

- - 2..- -
-—53}2-—('\13-0-19'“24-? M1 +P3-'r|o).

Marginal conditions at 2 = O and 2z = remain the game as for .

By resolving linear differential equation with invariable factore and

estilate of marginal condition at lower boundary we will have
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ot % gh R (k) (z - 3,) 7 . A’( _sh R (k)
'ﬂ = S % + P/ L]
Rp(k) (pa . 19) 1 Rp(k)
where 22 1 5 ( 5 3
S A (aapE )
R (k) = he Y —
P (1% + p%)

The constant A(p) is determined from condition of limiting. It
is not difficult in this case to obtain the followings If function r
is projected oddly on the negative semiaxia, i.e., to determine r for

negative z as
r (kp Koy =2, p) = -1 (k,[, kat Zy Py
functionqﬁ‘will be

d 211. (?.12)

% -R Z - %

f-o*m _ 4 g [ ) 1

" 2 (p° + 1%) R
“io P

It remains now to revert to the Furier's and Laplace's conversions
and to return to the previous function e First we reverze Furier's

conversion. We donote

* (X, Y, 2, p) = Pt (x, ¥, 2z, t) at.
0

We multiply both the portions of (7.12) by ??2 ol (k1x + kay)
i
and integrate by k1 and ka from ~wo to oo, From the theorem of
convolution (Furier's conversion of the product of two functions is the

convolution of the Furier's conversions of these functiome) it is

possible to write
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nr=- Sgg % (x = xps 7 = Fq0 2= 295 2) ¥ () 340 20 DX
~Co

X dx1 dy1 dz,I,

where

r* (x, ¥, z, p) = (q\’l)zz +p {'Y‘o)zz -

2 2 2 ’
2 _Aa .\ 2 3
..(—-t—cé-—m-}\k "'—"_cz)("f]‘i*P'Y}o}'uzz(“ﬂ3+p’ﬁ2+1”\’]1"'P"]o)

and

G* (x' Ty @y 1

[k ]
-R Z
gg i (k12 + kay) e ;é:‘ \2 dlc  d.
2 {(p° + 19 Rp "

The last function could be calculated using formula

K X 2y .2
. - +(k + k)b
ggel (k1x + kay) e 2 dk dk. =

_]."2 2 2y .2 1772
_D a~ + (k? + ka) b

2 2 2
e-—%—*/’b + (x + ¥%)

b‘V b° + (x° + y2)

Then we shall have: 2 5
exp{ 'm ]
1

G* (x, y, 2z, p) = =~
' S E(x-‘l)g +\p2]s

whers

S“W)a (12 + p%) (5% + 32
=y o* 2 =2 2
(x - 1) g°C7° + A p

Now we have to invert Laplace'se conversion, Assuming G (x, y, z,

t) prototype of G* (x, y, 2z, P), iee.,



22
1 1/x g 2
% dp,

1 P
G (x, ¥y 2, t)=—"8‘},‘:§__' S ° [(3_1) 520-2-[- kpas

VFio

(7+13)
wheraﬂY:> Os. In other words, the integration is carried out along a
vertical straight in the right<hand semiplane of composite variable p.
We denote also by G the integral operator with core G(x - Xg2 T = Tqo

Z - 24y £)y iee.,
Gu =ggg G (x ~ Xgn ¥ = ¥qs T = 2, t) u (x1, T4 z1) dx,dy,dz,
Then the resolution is given by the formula
2
=G (E& 2 2 }-1 ‘>Y]1 (é_ 2g2 - J;;/)?lo _

d 02
’"E%*@'w*“a'?% MCFERE LN G"‘I> 45 M*"a—*

(7e14)

Here, all functions“v}x are taken as extended by z unevenly on

negative semiaxis,

In a particular case, when the starting conditions are preset so
that only‘yl3 is distinct froﬁ zeroy formula (7.14) is quite gimple:
= C'aGwls. Hence, it is clear that G (x, y, 2, t) is the resolution
of equation withﬁfs-like starting condition, i.e,, function of initial

data effeact,
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(3) ACOUSTICAL AND GRAVITATIONAL PARTS OF RESOLUTIONS:

We have to investigate the effact function (7.13). We shall

write it in a more convenient form

G (x, y, z, t) =

{ sioo exp Y'—C-LJXZ + ye + ;\za 7/(,.312*_ lpa)(.ﬁaw?ﬁ
- - S oPt 2%+ Ap® ap;
8% ¥ 210 :1/ (Ta® + Ap®) ("C’Bg-: pa}’yx2+y2+ Nzl

(7.15)

where

-2 YE-1 g
T1 Ec‘v—)\—’ta N Cc

T = / 1° (x2 + ya) + (x - 1) ga 0252
3 =Y <@ 4 y2 .k Z2

P =+ i‘”c,l, + i’[‘a, + :i.”t3 - branching points of integrand function,
First of all we shall try by deforming the contour of integration to
convert the integral into a real one., With this object we have to
im#gina the behavior of integrand function in the complex plane, We
select those branches of radicals in the formula of this function, which
for peal p values are positive. In the vicinity of infinitely removed

point the function is unambiguous and behaves as

o (t = ¢ "I/xa + y2 + hz®

pZ 1/ x2 + ya + A'ZZ
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Assuming'l_z 1. At t.é; ¢ 1/ xe + ya + z2 the integrand

- - 2
function dampens, when Re p.—3 + o y and-at t >C 1# xa + Yy

2
* T .
when Re p—s -c0. In the first case it is poésible to shift the contour
into 400 , i.e., to drive Y to +a0, Bince in the right-hand semiplane

there are no special points of integrand function, the integral is

found to be zsro, Thus, at 7/ xa + ya + z2 2> Ct the function of effect

i® zero — a fact, that we know even before (para 1).

n .
(£,7
it,
T,
FLE
272

ity
(0.9)

-it,

Lty
~iTy

Fige7+.3% - Deformation of integration contour.

Ath/xz * yé_;-zaég Ct the integr#ﬁd-function daﬁpens.now in the lerft
semiplane. But the contour cannot already be shifted into ~ gince,
there are in its way special points of integrand function - the peoints
of branching. ¥Figure 7.1 shous these branching points on plane Pe We
draw the cuts, as shown in figure 7.1 by thick lines. Outside these
cuts all radicals are unambiguous functions. The figure at some points

shiows in round brackets two numbers. Those are arguments of two

radicals
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T (22D

o] 2
T
3 *P

and

‘fP/ (Tg'i-pa) (’V§+p2)

To the integral in (7.15) we add an integral from the same function,
but taken on a straight line in the left semiplane from -Y + isotoj-ico.
This integral will not change anything, as it is equal to zero - the
integrand function dampens at infinity in the left semiplane, But the
sum of two integrals is an integral on complex contour, shown in the
figure. We break this integral into two parts - integral along the
top loop, passing around the point i”f1, and also along the conjugated
loop around - 1171, and integral along the closed loop around i’Ua and
i7j3 plus integral along the conjugated loop around -if , and —iﬂ:sa
Analysing the signs of radicals at both the ends of sections, it is
possible to obtain the following formulas. For the first part, which we

shall name G_, {due to causes which will become clear later), will be

G, = —tme A

e ak 27t2
2 2 2 2
(T ~T3 (T T
Bin [0_1"\/ x2 +. :,ra +}\sa -\} S 3 - L]L s
X . T2_7T%
gin Yt - at,
11‘1 _‘/ x2+y2+7~za ’“"\j (Ta—’fg) (Ta-fg

(7.16)
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for the gecond

1
rpab 23{2 >< .
(T2 -7° (v2 ~°
cos | ¢V x% & ya + }uzanb/ 1 > > 2 .
(T5-T9 |
X sin Tt - —3T

—1/x2+y2+x:za _\/}\,(’US-‘L'Z) (‘Z’E-Tgr'

Now we ghall explain the physical meaning of dividing the
function of effect into two parts and the meaning of denoting these
parts. In chapter 4 during the investigation of waves in isothermal

atmosphere we recognized acoustical and gravitational waves from their
ultimate behavior in two extreme cases - with transition to ir-
incompressibility, i.¢., at ¥.—sco and with transition to indifferent
static balance, i.e¢., at¥W—=>1. Let us see now, what happens to

functions Gac and Ggrav in these ultimate transitions. We assume X.z Te

Let first of all’X—;c » Then T, VW g/FH—co o Hence, it
already follows, that integral Gac completely disappears. As regards

the second integral G s it, as can be easily checked, converts into

grav
S S
Grpap 2 T2 X
_l/'-,:a_ g
T cos[ DY 2® + y° e 2° bra 123
){& sin Lt — _2 d,
T3 Ve ey s W1~ 1 (1213

i.e., undergoes only some not very considerable quantitative changes.

Let X — 1, in this case we shall assume 1—>0, Then, contrary-wise,

G&c changes little



= -1 z VT 72
1 g wn| VVE e VT ar
G = Sim Tt f y
ak 2%% 21 _(/;ca -t-—5r2+zé 4
and
a __ __t cos L (2 1Y 2% + y° 4 2° I .
rpab = 27 -
V %%+ 5% ¢ 22

This function depends on time aperiodically.

These properties of Sunction Guc and Ggrav give grounds to see
in them actually the acoustical and gravitational pertions of the
function of effect G, all the more so0, as even in the ghape the integrals

are written in a way, that Guc represents superpositien of harmonics

sin t with frequencies higher than 1 =“V)(§7EH, and Ggrnv- with

frequencies lower than 7, s (X~ V)g/¥ H, as it shoudl be for
acoustical and gravitational wave. Thus Gnc in the form of superposition

of acoustical and Ggrnv ~ of gravitational wave,

Finally we shall use parameter-%.and see into what our fumctioms
of effect get converted in guasistatic approximation., At l“4?0 out of
three special points two (1‘:1 and 11:2) withdraw into infinity; Ggrav
disappears in the same way as at X—>» oo, vwhich quite corresponds to

the known fact, that acoustical wave are absent in the approximatiom of

quasistatics. Formula (7.15) becomes

tioe ot exp[ -Tq 7510-11/::2—4--;2— -V'I'g + p2

¥-ic '5'2"‘/ x> & 3° F\/T'g . p°

dp.
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The prototype of laplace's conversions we find in the tables of

Laplace's conversions. It is equal to

G = - 1 '\/ xH _ X

o (x ~ 1) g (x> + ya)

. / 2 2
p) X > 2 1 4% (x= + %)

4(x-1) gH

2 2
1 *V x (x= + ¥9)
v 1€ (x -1) gd . *

The vertical propagatiom velocity of disturbances has become

infinite, and the horigortal is equal to

2 YV {x=1)gf 2 V=x-1
: - xC
X

which conatitutes 2V X -~ 1/X#0.9 of the previouns velocity. Hence the

‘X= 1 will be assumed universally.

(4) ASYMPTOTIC BEHAVIOR OF EFFECT FUNCTION AT HIGH t VALUES:

The propagsation nature of acoustical and gravitational waves is
quite different as we know. Becuase of this it may be expected that
the behavior also of both portions of the function of effect Gac and
Ggrav will be radically different. A considerably higher damping
should be expected of the acoustical portion in time ard comsiderably
less diffusivity of the wave fr?nt. Moreover, gravitational portiom

should display greater anisotropy - non-equality of horizontsl and

vertical directions should be shown more clearly,
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ﬁ:ﬂi i

-iTy

Fig.7.2 -~ Integration contour for asymptotic
evaluation of Gae'

Direct investigation of the integral concepis for Gac and
Ggrav is made difficult by the ansalytical complexity of these formulas.
It is pbssible, however, to deduce asymptotically approximate formmlas
for these\@ntegrals, the sccuracy of which unlimitedly rises with ¢
in;rease at certain values of dimensional variables. We shall proceed
now to deduction of this asymptote. Naturally, this type of

agsymptote will be useful not the vicinity of wave fromt, but only in

the internal region.

We start with Gac' First of all we convert the integral in the
right portion of (7.15). With this object we change the contour of
integration;/:;all draw it not as in Fig.7.1, but as in Fig.7.2. This
could be done with the use of integrand function damping in the left
hnlf—plnne. The advantages of this type of contour is that function
apt gets expomentially damped im the left half-plane, amd if we
discard from the contour rectilinear "tails", leaving only as low as
desired (but fixed) surroundings of special peint with radius y there

will be an error exponentially damping with t increase, i,e,, unreal

in the main term asymptotes.
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Let us deal first with the integral along the top loop. From
what has been stated it follows that it is possible to expand the
integrand function into series according to orders p - 1«51 and to take
the least number of these series terms for obtaiming the chief term of
asymptotes. This least number is two with expansion into series of the
exponent, &ince the first term being one does mot have a branching point
and the values of integrals on both the edges of the section will
reciprocally disappear. Simply speaking, all functions not branching
at point p = iff1 could be substituted at this point by their values,

and the exponentisl curve - by its exponent

- - o
_i__ gt 'Y T, 42w,
i 2 2
- (72 .7

The argument of radical ¢ ip + T, &hould be taken at the top
edge of the cut as 3% /4, and at the lower edge - = % /l; 27, is
asgumed to be positive, Now we bring in substitution of varisble in the

integral

p=i'7:1-x.

Then the sum of integrals on both the edges of the cut will be

£
X = .
1 et T1b ot 1 (33774 _ e—lﬁr/#)ﬁdot_
8X25 . C(z2.7?
17 "2 '

The integral is taken here om a minor surrounding of zero (0, £), in
which case there will be an error, exponentially low with t increase,
if the integral is spread from O toeco . Then the integral is easily

calculated and found to be equal to
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i 1 (7. te3xm) Ve, 1 VT
-1 1 2 L
L2y | ¢ (v§zvZ /2

or

~/ C -3/ . Xg . 7T
an3/2 ?:_ 2)2 g2 t o¥p [1 (.20 *""‘E')I'

The integral orn lower loop is, apparently, complexly congugated

with this one. Therefore,

1 ~ R xg ., . X
G, = o cos t + e« (7.18)
W (Ag)2 (x - 2)° G )

The main part of the integral is found. It dampens as t'3/2. The

next terms dampen even quicker. Primarily the attention is drawn to
the fact, that thé hain ;art‘is.independent of #ny dimensional
coordirate. Thus, after some time from the acoustical part of the
resolution remains some quickly dampimg background, varying cophasaly
and with aimilar amplitude in big volume., In fact, the dampirg is even
quicker, if we take into account the wave reflected from the earth's

surface, i.e., the uneven continuation of the startimg conditions, The

effect of operator G on odd functiorn could also be written ag:

00 oo

Gu (x, yy 2) = g S E [ﬁ (zx - Xgs ¥ = ¥q9 2 = 29y b) -
S

[} -

-G (x - x1, ¥y o~ Yqs 2 + Zqs ti] dx1dy1dz1.

Since the main asymptotic term Gacdoes not depend on z, then ia
this formula the incident and reflected waves are reciprocally
destroyed. Thus, we can only say, that starting from the moment, when

both for incident and reflected waves it is possible to apply asymptotes,
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3/2 ye

the acoustical part of the solution dampers quicker than t~

did not investigate the next terms of agymptoteg,

Fige7.3 =~ Integration contour for asymptotic

evaluation of Ggrav‘

-

Passing to investigation of G « Here we shall carry out the

grav
same contour deformation, as in the preceding case (Figure 7.3).
First we take the integral on the loop, by-passing point i'f3 {(and the
complex conjugate, on the loop by-passimg peint -i‘rB). The reascning
will be the same as in the preceding case, Here it will be even simpler:
in the expansion of exponent it is possible to take the first term -

one, ag the branching remains in demomimator. The integrand function

becomes:

pt 1

"t/fg -7 ;d‘/xa + ya + _‘/2-2:'3 (ip + 7

8 %4

3)

The argument of radicaly ip +7 is equal to - X /% at the lower
edge of section and 37X /4 - on the upper edge. We bring-in the same

substitutiorn of variables, as before

Then the integral becomes
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£ . ) .
: L o ADTT
. 1-’2 g R "L'_",t e_gt A J‘C/4- e /4 as.
8L54

2
6 ('rg—”’fg) (x2+y2+z)213¢

Calculating this integral and adding it up with the complexly

conjugated, we get

X
G(‘I)b ) ’ Cos(TaL + T
Ipa LN 72 b
(873C7¢) V(2 + ya) (’L’S - 1% ¥ 3

(719)

Now let us change~over to the secord part of Ggra.\r' to the imtegral
on loop around the point £+ Toe For asymptotic calculation of this
integral the p in integrand function could be substituted by its value
at point of bramching iqja everywhere, except the exponent ept, which
provides for the dampirg of integrand functiorn and the binomial p2+'t g.
The latter, by the way, could be simplified, by assunming (’L’2 + ip)

(’ra - ip) = 2"5."2 (‘-’:.’2 + ip)e A4s a result the integral becomes

eXp -C X + ¥y + 2 :L (
Pt J'P + 7 [ 2)
dp,

S
823y

i'v 2T, (ip + T,) (’L’g - ’t’g)’f/xz +Y° 4 2°

ory, if we introduce a mew variable of integration p = i ('1-'2 +9%),

a
eifzt g einc‘t - V& e (7.20)

where,



a = 0-1—V x° & 32 + 2° 5 '
s
b o= 8752 1/ 27T, (’:’2 - ’Zg) X2 + ya * 2° (7.21)
The integration comtour on plane ¢ is shown in Figure 7.h4.

For the correct selection of branches it is necessary to assumej@?f

as pogitive for positivex .

The integral obtained urfortunately, canmot be evaluated by such
simple means =& before, i.e., expansion of integrand fumction imto
series im surroundiange of the special poimt, due to the fact, that now
connected with the branching point is & real feature. It will be

necessary to use the method of crossing. Having written the integrand

A
N

Fige7al4t =~ Part of contour, shown in Figure 7.3,
on plane .

finctior as

V

It will be necessary to draw the comtour of integration through the
erosg-over point, i.e., through a point, at which the real part of
exponent would be greater fhan throughout the rest of the contour, and
in such & direction, that the imaginary part of the exponential curve

on this contour in surroundings of the crossover point would have besen
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constant. We shall investigate first the rsal part of the exponent,
Assuming o = re* s argument may vary in accordance with the section

drawn in plane cf from -3%X/2 to ® /2, Then

cos-ff-z:

ReH (t, ) =~ rt sing - =

=-cos—-§—(2rtsin§+ a()
+r

{The logarithmic term need not be taken in the estimate, as it is
asymptotically negligible in comparisorn with preceding term at low o }.

This formula is equal to zero, if cos ;g— = 0, i.0s, on the negative

semiaxis, T = -7t, and on the curve 2rt sin ‘z + 2 = 0. These two
r

curves are shown in figure 7.5. They break up thd plane into two zones:

in cne the real part of exponent is positive, in the other « negative,
The first zone on the skeich is hatchured. Intersection of the two
curves occurs at point

0!1 = (—é%-_;) 2/3.

We draw the comtour of integration as shown imn the figure.

Throughout the contour Re H<O, and at point X , Re H = 0, i,e., 2t

1
this peint the Re H is highest. We shall show that it is possible to

8

Fige7e5 = Conﬁour deformation for the application
of crossover method.
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draw the contour in such & direction that ImH in surroundings of L 4

will be constint, i,e., that this point is the sought for crossover

point. In surroundings of point < , we eXpand H(t, <) into series |
according to orders of X -« _j H(t, °C1) = 3i (aat/4)1/3 -ln[}i(a/Zt)1/éL.

The next term of the first order relatively to (d“.ci1) cenverts into

(¢ - x,)
* * ee——
zero, since JH(%, qu)/acx= O« The sguare term is equal to >
(} S8 - L ). The second term in brackets could be

5/2 2 ole
4d.§/7 ;
asymptotically disregarded. Now we take the direction of cemtour in
such a way, that the square terms alomg the contour will be reals For
this there should be
_ 2 2
O{-"'O(r-‘l d?/

2
1

ar o= X 1‘: _q_:‘ & -0(| 1/e'ijt/.i+, Pee., contour shown in figure 745

should intersect the real axis at point o, at an angle =T/,

Let us return to integral (7.20). For asymptotic evaluatiom of
its behavior the significance @# only of the surroundings of the
croas-over point 0L1’ since fhe remairing portiem exponentially decreases.
Whereas in the surrounding of this point it is possible to write, that

the integral is asymptotically equal to
et .
Here we have taken as a varibdlé integration §=ol ~ <i1) eijr/q.
The limit® of integration without any adverse effect could be taken -oo

and @@ | changing integral to exponentially decreasing summand, The

integral obtained is easily calculated; it is equal to
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3 5. x
- 3:71‘ i (3 )

It only remains to remember the multiplier, which was in front
of the integral in formula (7.20) amd to add to the obtained term the

complex mdjoint (integral on symmetrical loop around.—i'fa). We have,

finally
2
(2) -]/ x 1 a“t \1/3 ')t) .
Grpab = 3% b CoF <:r2t -3 (5—3__0 M A (7.22)

Thus, the asymptotes of the gravitational part in the function of

effect is shown by the formula

(1) (2)
Grpab = Grpab + Grpab‘ (7.23)

-ﬁ'

The gravitational part of the effective function dampens as t
i.t., is considerably siower, than the acoustical., It is considerably
non-uniform in coordinates and is ani‘sotropice. This asymptote decays
in the approach to vertical direction, where it abaciutely loses any

mesning.

But what is the behavior of Ggrav vertically, at x2 + yz = 07
It is easy to see, that in these conditions ?:2 = qrE'and the calculatior
of Ggrlv is confined to integrat?on along the contour, passing around
the pele, i.t., to calculation of swbgtraction at peimt p = i7T, = i7

. %ept exp[-c“1z ’][zz—;p—_']

= o —— dp + complex conjugated
rpab 87 24 (Z5 + 29 z

3

G

term,

This produces
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1 (x-ﬂ exp { lx-al ;,]Bin _V(xxﬁ“l)g c

Grpab R
(7+24)
This is not asyuptote, but exact soclution. We can see, that on

vertical line there is always undamped standing wave1.

(5) NUMERICAL ESTIMATE RESULTS OF THE WEIGHTING FUNCTION:

Agymptotes, obtained im the preceding paragraph, were useful with
high t values, i.e¢., considerable time after passage through a viven
space point of the wave front. It is of interest to estimate the
weighting function throughout the whole zone, specially im the vicinity
of the front. This will make it possible, besides everything else, to
evaluate the zone, where the asymptoes give satisfactory resulis. We

give the results of such estimates,

Figure 7.6 = 7413 show contour lines of acoustical and gravitational
parts of average function for different momeats of time. The initial
disturbance was taken at 30 km height, and the following functions were

plotted,
G (x = x4y 7= Tgr Z = Zq» t) -G (x - x1, Y =¥ 2+ 2, s B)

for G, and Ggrav. Fige 7.6 shows contour limes of G . &t t = 1 min,

Fig.?7Jf - these of G The disturbance is propagating at velocity

grav®

¢ = 18 km/mimn., therefore, during 1 min it did not have time to reach

the earth's surface, The contour lines are gimilar to concentric

1. In Ross' article (1961) a similar preblem is being reaolved, but
for alayer of compressible fluid with open surface. The equations
there are sonewhat simpler of second time order. Asymptotic
investigation leads to similar results: immediately behind the
wave front the main significance is of elasticity, whereas in the
rear the oscillations are similar to those, which would have been
in incompresgsible fluid.
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gurroundings. However, even with low t value the diffe;ence is c¢clear
in the behavior of acoustical and gravitational parts. While the G__
contour lines concentrate at the periphery and the field in the internal
part varies continuously, the gravitational part of the mean functien
Ggrav behaves in an entirely different way. The zone of sharp
variations remains near the point of initial diaturbance,'and farther
on the function gradually drops. This difference is specially clearly

defined in vertical gections (shown on the right), drawn at a distance

of 2 km from the peoint of initial disturbance,

0 1 1 |
10 20 °  80ram 30rKm
Fige 76 = G, contour lines at Fige7.7 = G contour lines at
c ‘ 5 5 rav
t = imin., r = %X + ¥ t = 1 min,.

The next four figures pertain to the time t = 5 min. Fig. 7.8
pertains to acoustical part. The sphericity of level surface is
disturbed by the reflection of the earth's gurface, but non-the-less,
remains moticeable. PFigure 7.9 shows vertical section of this mean
function, drawn through the point of initial disturbance, and the

reflection wae mot estimated here, It is possible to see the internal



- 265 =

zone of Gac invariability and quick drop toward the edge. Figure 7,10
shows gravitational part. This function in no way resembles the
acoustical. The change of phase is specially typical. Figure 7.11
shows for comparisin' weighting function, claculated from asymptotic
formulas, obtained in the preceding paragraphs The qualitative

convergence could be taken as successful.

Figure 7.12 pertains to the gravitational part of the mean

function G " at t = 15 min, and figure 7.13 ~ corresponding asymptotes.

grav
With the passsage of time the number of nodal surfaces increases and the
pattern becomes multipetal. Both the figures coincide satisfactorilye.
The number of lobes is the same. Moreover the cocincidence takes place
not only in the center, but for on the periphery. All this goes to

show, that the asymptotic formulas could be used for mean function in

o wide range of conditions,.

Gax

20 '45 I 6|0 80 zpum

— - —

Fige7.8 = Gac contour lines at Fig.?.9 - Vertical Gac section;

t = 5 min. r = 0.
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Z KM
100

80

60

° 650 I 810 ."'IKM I
Fige7e10 = Ggrav contour lines Fig.7.11. Contour lines of Ggrav’
st t = 5 minm, calculated from asymptotic formula

at t = 5 min.

- = Z HM

Z KM 300

240 240

180 180

T
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6. FORMULATION OF PROBLEM ON PROPAGATION OF DISTURBANCES
IN THE CASE OF ACTUAL TEMPERATURE PROFILE AND
SPHERICAL BARTH:

The problem, about which we shall speak in this paragraph,
is practically the most important out of all the applications of
developing theorem. There is a good amount available of the
literdture, which throws some light or touches upon this question.
Until recently the only manifestations of the global disturbance
propagation from a concentrated source, fixed by observers and to
a certain extent investigated qualitatively, were the two magnificient
natural explosions - the explosion of Krakatoa velcano in 1883 and
the explosion of the huge Tunguss meteorite in 1908, Pressure
surges were marked by barographs throughout the terrestrial globe,
and the waves passed around the earth several times. It was possible
to measure the propagation velocity of the wave front. It was found
to be about 317 m/sec, which corresponds to h = 10 km, obtained from

formula v = Y ghe

Later on these data served as empirical basis for working
out theoretical models of atmosphere. (We have seen, that this h
value conforms very well also with our model, based on standard CIRA
atmosphere 1961). At that stage the more well known theoretical work,
which threw some light on the mechanism of disturbance propagation
from the point source, was of Peckeris (1939, 19#8), and also of
Scorer (1950) and of Jacchia and Kopal (1952)., These models are

stil) very sketchy,
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During the subsequent period as a result of hydrogen bomb explo-
sions the accumulation, unfortunately, was of too vast observation
material, The interest for invesfigating this material empirically
and theoretically was shown primarily by Japanese investigators (see
for instance Obs.division, 1955), specially Yamamoto (1957). A
note should be taken also of Wexler and Hass article (1962) with multiple,
very graphic figures of wave front, propagating from the point of
hydrogen bomb explosion, and fhe recently published work of

Wickersham (1966).

Many theoretical works have appeared. In majority of
them the atmosphere is presented as composed of a high number
(upto 20-40) isothermal layers. Here a note should be made regarding
the work of Hunt, Palmer and Penney (1960), where the number of
layers is still not high, and the subsequent work of Press and
Harkrider (1962) and Pfeffer and Zarichny (1963), also the works of
Pierse (1963, 1965) and van Hulsteyn (1965) From our point of view,
the most mathematically accurate formulation of the problem is of
Weston (1961, 1962), although in other works alsc the physical results
obtained are highly interesting. These results have been partially

mentioned in preceding chapters.

We shall construct now our own version of the theory of
disturbance propagation from the instanteneocus point source, based
on our previous analyses. We shall only write the formulas.

Calculations from them were not carried out.

We shall take as basis formulas of preceding chapter.

At the starting moment, as has been stated, starting moment, as
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has been stated, function y (j: x ¥ ﬁ/ﬁo) should be preset

and its three derivatives with respect to .t i.e., conditions (6-4).
In this case the functions y(k) are not at all arbitrary. The
arbitrary are the starting fields u, v, w, p, 2 . They express
the divergence X quite obviously, X, from formula (6-2) and the

two next derivatives from the general formula (6~3}., This formula
combines the two. One of them is obtained by substituting instead

¥ 7o) o) F (o)
1 *

ot T, y P functions X, ey F » which we denote by f,

11
,._J
The second formula is obtained by substituting fl Xt’ fa = xttt’ @ =

~
- E? (Pz + EP Je These values we denote by f(d) éd), T (d)-
Since y is distinct from X by normalizing multiplier "in%i:, the

starting values will be:

S(0) _ fic)' S

@, @ _ gle) [03) _ gla)

~ —VT‘:—‘
f1,2 = 1,2 B, (7-25)

The starting values are expanded into spherical functions,

where

after which, as we know, for each component (n, s) it is necessary i

find expansion by natural oscillations:

(g’) =Z Cn's'an‘j(X)
(2) 2‘ ( / nissan9j(X)

ey
n,s 'Z “nye,37n, 3%

(3) Z ( 62,3 - n‘J(X)'

and
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Finally the resolution will be

_ i8cy |8 e ( i : -ig -'19:
¥y = E e “?Pnl l (COS )Yn,j(x) an,s,je n,j t + bn,s,ja neJ

nysS,j

where

i
a , == G .
NyBy ] Ly N,8,J

Formulas for factors ¢, d were given in chapter 6.

{ec, d)

we substitute there the term f.l >

conversions1
oo
¢., d. = xb VB x
J J o Pq
) o)

+ HI

d .
N8, o o
* i Gn,j‘> ’ bn‘s’j Zz Cnisaj

{(c,d) f(c,d)
¢ o

eena(7a25)

} dnzs,j)

i Gn’j

If

y we shall have after some

8 A (e,d) (c,d)
+(6?T - hj> ():H‘f’ 5 1 a2
X o y (7-26)
£ -05)\E
5B ]
J
1 ’ . = » (C’d)
The conversions mean, that into formulas (6=50) instead of fa )it
is necessary to substitute their terms (6-3) by £:¢,4) and (€,d).
After this integration is done by parts so that under the sign of
integral there will not be derivative functions f; and , but only

these funciions. In integration by parts appear

m%rginal terms and it

iz not obvious at once that they are zero. In fact, they are zero,

because the starting data at z = O, should meet

the following condi-

tions: there should be conversion into zero of w and also of w time
derivatives, which could be expressed by means of & system of

equations by the starting fields u,v,w,p, .
and wgy =
is what agsures disappearance of marginal terms

‘ Thus, w, = =
/(K= 1)gX - c2xz + gwg)/ should convert into zero.

(pz+g?)
7 This
in formula (7-26).
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Incidentally it is precisely this conversion we had in view at
the end of preceding chapter, when speaking about factors c, d
converting into zeros for Peckeris solutions. It becomes immediately

clear from formula (7.26).

Let us now take & particular case of setting starting conditions,

when enly density disturbances are distinct from zero. Then f(ﬁ)a = O,
and therefore, all the factors ¢j = Oj T’(d) = -gfa/?5, ¢ ;d)= féd).

Substituting these values in (7.26) and integrating by parts, so that
this formula does not contain derivatives %’;d), but only Cf(d), we will

have

xﬁo& V--P—Eo [y'j+<~;;j - 2;>y;] ¥ dz +
s . " N

- a2 {2
dj i  + xpog j, (Gj ;ﬁé{)?(O} ¥y (0}
ISR I |

(7+27)

Hence, we shall assume that the close to surface disturbance values,
i.e.,(f (O), are zero. Now we make one more simplifying assumption,

that the starting conditions are of the type & = function:

P=Kb(z - 2,) Z (n + -—;—-) Pn (cos ©). (7,28}
n=o ,
then, : , }
AR C R AN R
d =

Qfg‘ - 53¢
(7.29)
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The asterisk signifies, that the corresponding values is taken

at the height of explosion Z,.

In principle, the solution has been obtained. But physically the
ihterest is not of function y, which is not directly evidant, but
pressure. Using the y and pressure relation (see beginning of chapter 5),

it is easy to obtain,

p=x2§o!{ Y Pub E (n+ 1 )P (cos @) cos 0 4 t X
D, 3 2 B

’ 1 4" 2
1 R S
EY n,J * ( h . E-H) ynsj] . Kjrl’jynaj +

0y 3

1
t - —
* &RV n,y " TZH Yn,£)]

2 2 _ _ g t>2
% 0,3 (Un,:i B, /6 i

(7.30)

This resolution includes constaﬁt K, which has to be selected from sonme
normalizing conditions. Oane of the possible methods most frequently
applied (for instance, by Weston), is to preset amplitude of disturbance
at some single point, for instance, directly above the point of explosion.
These data could be taken from observations. The amplitude here is
taken somewhat conventionally, since the resolution is not sinuscidal.
Immediately after the passing of front through the cbservation point the
prespgure reaches maximup then follow several graduallﬁ damping waves.

In formulas (7.30) and (7+31) the summation is double, The following
order of summation is the most conveninent. TFirst the summation is done
by n, along one mode of vertical equation, and then by all (or

practically, several) moede, analysing series (7.30) and (7,3%1), it can
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be seen, that the inclusion of very low and very high wave numbers n
iz negligible, so that it is possible to leave only certain range of

mean n values.

If the low n numbers are discarded, the Legendre polynomials in
formula (7.30) could be substituted by their asymptotic values at high

numbers

on (o) p- |
"Vaﬁnsnmg

?g {(cos 9) -

(7.31)
This presentaotion will be disturbed onlylin the direct vicinity
of poles, mole exactly, it holds true at &/n< @<L T - €/n, where is
random fixed constant. The lower we take this constant, the rougher

will be the residuzal term. The sum (7.30) we shall write as

. ',f
p=,chosK.@+~lz-)g-7i—-- %jt} £ (n) +
+ Z. cos[l@+—%—> 9-%[-—+ O-n’jt—Xf(n).

n
(7.32)

Under the sign of the sum here is the product of fast oscillating

: JL 1) 7 ‘E
function coa[{nd--—%s -5 0t| or cos QJ-:-T 9-T+ gt
by function, changing very gradually. 8ince we are not taking the
lowest n values, the spectrum of Laplace's equation will be very dense,
almost continuous, between the two subsequent eigen values n the function

changes very little,

Let us now take the sum along some characteristic curve. For any

t moment and point @ the main significance in the sum is of several
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summands corresponding to wave packet with group velocity a@/t, Te2ay
passing the given point at a given moment, and also to wave packets
passing through given point not directly from the source, but after
passing around the earth several times. This could be proved by the
method of stationary phase, applied, for instance, by Weston (1961).
The principle of stationary phase was invented by Kelvin sgpecially for
gimilar sitﬁations, he also has introduced the concept of group velocity
by means of this principle. 1In contrast to the usual application, we
apply now the principle of stationary phase to the sum, without
substituting it previously by integral, which would have been baseless
due to the presence of fast-oscillating function, the period of which

is gquite commensurable with the spacing of summation.

Let us take the first of the summonds in (7.32). Taking any n
value, we assume it is , and analyse several terms of the series with

values n close to . Ye use expansion in accordance with Taylor's

formula
~ i ( +-1: x - U&’é]ﬂ
COBE@-F”%_)B-%“ O'ntI‘.:‘rRe{ e [\3 2)8 I
y 2
X . Y)[B _doy_ Ie_i (n5 )2 %gvz ;j'
(733)
Since the f(n) varies very gradually, we substitute the f(n)values

by #(Y¥ ). The values is stationary, if

cxp{ (; Y)[ - BGV t = 1,7€.

E“t_"%ﬁ‘%-'&‘aﬂd,dsog 1’ o e
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In this case the formula for wave packet, i.c¢., for the sum in n

values, similar to s could be converted as follows:

Zcos K,Ql +'—%—) e-—%z-u Un,jq f (n) =
: . 2
KT L R SRR SR Pe

(n =Y)
xSe'l 5 oy 5t dnkf(\')
2% cos[ (\‘f*"?a')ﬁ‘"??t'* of .t «
|9%3]*
+~{=—sgno’¥"g'j]f'(\1). (7.34)

For the second summand in (7.33) the stationary points are those, where
9 + t36Y /On=2REL,A =0, 1, 2, ees and the corrésponding wave

packets contribute

1/|o-" nr °o° [@*—%—) §- >0 .3“‘_“;;"55”*" ,j] £ (¥).
(7.35)

Considering, that number n is bound with wave number k by relatien
k n/a, wve may finally formulate the obtained result in the following
waye At present 9 and t at each mode of vertical eguation we have to

find points, where group velocity is

A6
’a = = ag o+ E?cq:’ oK = O‘ 1, aes (7-36)
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or
%61:{ = - _%'9— + 2‘7{&, d. = 0' 1g awe (?‘37)

amd each of these points contributes into formula for pressure (7.3h4)

or (7.35), where

£ (V) = xaﬁo —;/5*5 K “/ Y X
2 J2 %

17y 5+ G \}d -w) IV, ] [%‘/ 3y ,y e G - vy )

(=F 5 - E"f;f‘)a oy by v

A

(7.38)

The physical meaning of (7.36), (7.37) is quite clear - group
velocity is such, that the corresponding wave packet during time ¢
reaches point @, directly from the shot point, or having passed around
the earth once or several times. The formulans obtained should be
summed up on all the modes, where there are points with this group
velocitye. As the formulas show, the essential point here is, that 0" ¥
O, ie€ey the variability of group velocity or dispersion. Hence it is
at once clear, that the reasons given are suitable only for those 6, t,

for which a g/t is lower than the maximum group velocity 315-317 m/sec,.

But if the investigation has to be of the head of the wave, i.e.,
the surroundings of its propagation frout, the stationary phase method
is not applicable any more. Here we have to calculate the sum total
throughout the main non-dispersing complex mode he10 kme It shoudl be

mentioned, that this sum could be of significance alsc for the area



- 207 -

located quite far in the rear of the front. This will happen, if the
source, i.e., the shot is not high above the earth's surface, Tﬂis is
indicated by the multiplier [?‘ + (%%“ - —%g{} 7/ee As we know, the

basic mode h = 10 km very quickly dampens with height for low frequencies
{periods over 10 min), and for high frequencies concentrates at height

17 km and just as quickly dampens at high altitudes. With high altitude
explosions the basic mode cannot be excited at high rate. On the

contrary, in this case there is excitation of higher modes, both acoustical

and gravitational.

We have given formulas of solution with one version of preseting
the starting conditions - when the starting density is preset in the
form of - function, and the remaining quantities at the starting moment
are equal te zerc. Of course, the general formulas, given earlier, wmoke
it possible to resolve any starting problem. Now just a few words in
defence of the selected starting conditions. At the instant of thd shot
the temperature in the source instantly rises. The density with this
varies insignificantly, therefore, in proportion to t;mperature the
pressure rises also. The shock wave withdraws from the shot point and
beyond it the pressure levels out. The temperature remains high at low
pressure, i.e., the density drops at high rate. This is the moment,
that we are taking as starting point for the solutiom of our problem,
since the shock wave isrnot included in our analysis, being an essentially
non=linear and small scale event. As the starting condition it is also
possible to take, as it is done frequently, the presetting of velocity
divergence as a ~function. Generally, the selection of correct
starting conditions is a matter of explosion physics, the same as

determination of the share of the expleosion energy, which goes on
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formation of our large-scale waves, and not coanverting, for instance,

into energy of shock wave, dispersing in the vicinity of the source.

e e " e™eTe™aTe" 0"
AVg gt g™
*aT e~ ey

[ Bl Bl Sl |
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CHAPTER - 8

ACCOUNTING FOR THE MEDIUM WIND IN THE PROBLEM OF
FREQUENCIES ON THEE ATMOSPHERE'S FREE OSCILLATIONS.

Throughout the thecory, developed in preceding chapters,
equations of dynamica were linearised in relation to a certain
medium state, which was that of calm, i.e., there was no presence
of medium wind., . At the same time it iz known, that the wind affects
the propagation of waves in the atmosphere, The second importent
gphere of events, where the effect of medium wind could have been
felt, is the theory of tides in the atmosphere. We have mentioned,
fhat one of the possibilities to explain in which way the solar tides
in the atmoaphere happen to be of higher intensity than the lunar,
whereas the tide=forming power of the sun is weaker than that of the

moon, is the theory of resonance,.

Since the difference between the frequencies of =solar and
lunar tides is very negligible, about 3%, this theory requires very
precise "tuning" of natural freguency to freguency of solar tides,
gonsiderably more precise than these 3%. We know, that with our
model of temperature stratification, namely, for the standard CIRA
atmosphere 1961, the nearest eigen value is much too far from the one
required by the resonance theory. The dimensionless frequency
f=0 /2 is equal not to one (period of oscillations ~ semidiurnal),
but to 0.96, i.e. 4% less. (If we compare not frequencies, but the
values of equivalent dynamic depth h, then instead of the 7.9 km
required by the theory we get 6.8 km). The question arises, whether

the position is saved by the eatimate of medium wind,
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Generally speaking, the problems in which it is required to
find the spectrum of the atmosphere's oscillations in the presence
of certain medium, usually zonal wind, are very difficult and hardly
touched upon problems, studied by the theory of dynamic stability.
But in the theory of tides, as in some othexr important questions,
for instance, in the theory of propagation of acoustico gravitational
waves from the point source, it is possible, as we will see, to

manage with considerably more modest means.

Assuming that an introduction is made into equation of a very
low velocity of medium wind, each point of the spectrum experiences
a small disturbance. The order of this disturbance will be such that
the phase velocity of oscillation would have to change by a value,
 commensurable with the brought in wind velocity. With the increasing
wind velocity the disturbances become more considerable and it may
happen, that two eigen values will merge. With further increase of
velocity they will separate in complex plane, i.e., the frequencies
will become complex, There will be an appearance of instability. No
matter how 16w the wind velocity is, there will be a zone in the
spectrum, where the brought in disturbance will be sufficient for the
merger of eigen valus. This will occur in densification zone of the
spectrum, for short gravitational waves. Here, as we know, phase

velocities of characteristic solutions tend to zero.

1
The second zone, where the instability may appear immediately,
is the zone of long and slow gravitational gyroscopic waves (internal
Rossibi waves). As regards those zones of the spectrum, about which

we were just speaking, primarily zones of semi-diurnal tides, here
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the spectrum points are sufficiently removed from each other. To
estimate the wind effect here it is possible to use the perturbation

theory,

We can mention several works, in which the perturbation theory
is used with this ohject. Those are the worka of Weston and van
~ Hulsteyn (1962), and of Pierce (1965), who speak of quick waves, and-
Sawada (1966) in whose work these methods are applied in the theory
of tides., However, in all these works the wind model is of the type,
which does not prevent division of variables in equation. The aim
of the present chapter is to show, in what way the perturbation

theory may serve in the estimation of wind of any profile,

For the sake of simplicity we begin with the case of flat non-
rotary earth. In the absence of moderate wind the natural cscillations
satisfy the system of equations known to us (where zero index at the

bottom means, that we are speaking of solution undisturbed by wind):

i OoPYy = = :.ef.PO, iGoPo - B pwg + XPX, = 0,

i

~ i? PQ’ iD’O 'y‘o + /g(ozo 0 = Ou (8.1)
.. _ 3%
Y00 Pw0o =~ "3z " 8Pp

104 pY

Here'n =P - C%O - entropy. In this equation Uns Vo Pos %o
could be taken as real, wg = purely imaginary, assuming now there is
some field of moderate wind., For the sake of simplifying formula
writing we assume (but this, generally speaking, is not essential),
that the velocity vector is every where parallel to axis x, i.e.,

there ia one component U, dependent on transversal coordinates y, Ze



- 282 -

Let U = 0 at fyl ~>Y, i.e., the analysis is of siream, It may be
assumed, that at U there is & certain minor parameter, by orders of
which it is possible to expand the solutions. Then for the terms of
the first order relatively to this parameter marked by index 1, we

shall have a system:

- . - _ _ . _ . - _ - ' - -
i0gpuq +ig,puy=-1i%p, -1 *PU uy - U +'0 PLEPY

P -
. ~ d_1
i(j'of)v,' + i(j,IFVO- - TFy T iﬁlfoUvo,

. ‘ - aP,‘ o |
106pw q * 10qpw o = = "5z~ 8pq = 1EL TN

i 0P, +10,Py - 8Pw  + XPx = = iU Py,

iolo-y!.l +i61éy'l0 ‘.‘Ffé.w 1= io‘-U“n’loe (852)

We multiply each equation of system (8.1) respectively by ur, v;,
Wiy P;/vﬂﬁg g ;/7c§ﬁ (where the asterisk means complex conjugation)
and add up the obtained equations. We also multiply equations of
system (8.2) by the same values and add up. We substitute the last sum
by complexly conjugated and add the first sums We integrate the
obtained equation by z from O towoo and by y from =Y to Y, i.e.,

throughout the whole gection of the stream. It is easy to check, that

we will get
Yy % Y o
1 -
0,8 = -QKS S Uedz dy ~ 33— S g’oU'zcoouadz dy,
- 0o -Y d

where e = density of energy, bound up with undisturbed solution



- 283 -

_ 1 ; 2 + |V 2 +|w a + 1P&2 — EI“ Aa
¢ =72 Xf,dPA ‘ A i A ) x5 x5

-]

and E ~ total energy, E = 2Y S edze In relation (8.3) only one
quantity is marked by index 1? namely 13 the others pertain to
undisturbed motion and are taken as known. From this formula we find
disturbance of frequency 1° It is found to be real, as it should be
within the applicability of the theory of disturbances. The right
portion consists of two terms. The second, Reynolds numbgr, could be
taken as minior in those important cases, when the vertical velocity
of natural oscillatiocn is very low., In this case the formula simply
confirms, that addition of -f31/m to phase velocity in the direction
of flow is equal to flow velocity, averaged in the section, and the
most interesting is the fact, that the weight in this averaging is the

density of undisturbed oscillation energy.

—

Assuming also that w, =~ iwo, so that all the variables Uye Voo
o

Wor Por M o could be taken as real., Then the Reynold's number will be

% Sg p U'z wouodzdy.

Exactly the same can be done in the case of the model of spherical
rotatory earth. Assuming u is zonal component of velocity, v =
meridional, 1 = 2 w cos ® (where © im polar angle), relationship
lengitude ¥ exponential, i.e., has the nature of exp (is ¢ J, ivy =

Pt N Pt r— F—
Vot 1¥g = ¥4 and moreover u,, Vo ¥g! Pgy Mg are real. In this case

o 0
it should already be taken, that the average p, values also depend
on latitude, since they are bound up with the wind by geoatrophical

relations., The condition of statics should also be met, Thus
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1 %2 2B ..

If it is assumed, that at U there is a minor parameter, then the
quantities 5 and p may be taken as expanded according to orders of this
parameter; p = Eo % 51, P = Eo +  pqe The terms of zefo order depend
only on vertical coordinate z. We identify them with the standard CIRA
atmusphebe 1961, which we were using up to now. From.the condition
of geostrophicity we determine by integration from 6 value of the firset

order p, with accuracy up to random function from 2z
1

M

- - A

Py = ~ 2awp g U.dpt + £ (2}, (p= cos 8)e
9 E 1 - pa

To specialize this function we require, additionally, that the
mean p value would coincide in latitude with the pressure in standard

atmosphere, l.o. p1dfl= O. Then we get

1
v +H
V /12 : - #

c — - _L‘.r-p_l

p1=awp[

Hence, it is already possible to find Pqo using the equation 851/
dz = g2;1. Thus, the wind, i.e., function U(z, 6), could be set
arbitrarily, whereas the other quantities, characterzing the main flow,

should be determined unambiguously.

If we now use the game procedure of the theory of disturbances,

as in the cage of flat earth, we will get the following result:
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Fige8.1 = Section of the middle zonal flow according to
Murgatroyd (the continuous lines show velocity
isopleths in m/sec., dotted lines - tropopause).

All the quantities here are real. This formula is the most

common.

We have used this result for estimating on computer corrections
for the frequency of natural oscillation, the nearest to semidiurnal,

50 28 to see whether the estimate of wind would affect the conditions
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of resonance generatibn of forced and natural oscillaﬁions, Ag the
nodel of wind we took Murgatryd's model (1957), shown in Figure 8.1,
where the isotachs of moderate wind are shown in m/sec. The mean
pressure was detefmined from the preset wind, as described above,
Correction for frequency, obtained from formula (8.4), was found to
be extremely negligible. It cannot be of any significanee. Anyway,
this correction obviously, depends to a great extent on the choice of
the wind model. In any case it is clear, that by means of this
correction it is impossible to esxplain the stable resonance of solar

ties,
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S UMMARY

The book deals with a study of the adiabatic oscillations of
the rotating sfratifie& atmosphere, the temperature of which depends
upon the height, according to the so~called standard atmosphere.
These oscillatione can exist due to several different by their nature
and, however, interacting factors - air elasticity connected with its
compressibility, demsity stratification, and gyro-scopic rigidness due
te rotation. Respectively, for every particular oscillation, i.e., at
a definite value of frequency and wave numbers, as it appears, oanly one
of these factors plays a determinative role; the rest introduce only
small distortions. It enables to classify the osecillations rather
distinctly, selecting those of acoustic, gravity and intertial-gyroscopic

types.

Hugh attention has been paid to a study of the energetic structure
of oscillations. Primarily, it appears of interest to find the relation
of energy parts of different types: kinetic, connected with the horizontal
components of velocity, the same with the vertical component, further
elastic, connected with pressure osciilations, and thermobaric - with
entropy oscillations. This energefic gtructure characterizes the type
of oscillations in the above sense; it determines also the group vclocity

of waves,

The paper deals with space distribution of the energy density.
The latter mBeems to be important in a study of wave quide properties of

the atmosphere as related to short waves, and alao in a study of thermal
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barriers preventing the energy escape upward for very long waves.

One manages to study some non-stationary problems of dynamics
of the atmosphere by way of the extension on the wave solutions.
Namely, one itreats the wave propagation from the instantaneous point
disturbance like a strong explosion. The solution splits, naturally,
to the acoustic and gravity parts. In accordance with large group
‘velocities of acoustic wavee, the first part of the solution disperses
quicklys The second one disperses much slower, forming the oséillating
"tail? of the wave., The asymptotic formulas for the solutions for
large time have been found and compared with exact computations by an

electronic computer.

One more physical problem treated in the book is a study of
perturbations in some parts of the oamcillation spectrum created by the

mean sonal wind,

Very much attention haes been paid to the development of the
mathematical apparatus of the theory. Particularly, two chapters of the
book have been devoted to the study of one of the two fundamental
equations of the theory - Laplace tidal equation. The spectrum of the
elgenvalues of this equation has been completely studied. The asymptotics
for the limiting values of the parameters have been found. The
mathematical properties of the second équation of the theory involving
the charactefiatics of the vertical structure of the oscillations have
been studied. The study of energy turns to be of interest not only for
itself as the most important physical characteristies, but it gives the

mathematical apparatus -~ the natural metrics for functionally-analytiec
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investigation of the equations. In particular, one manages to

clear up the question on completeness of the system of wave solutions
(that is important to establish the possibility to solve the
non-sfationary problems by the Fourier method)., The same metrics
permits to solve the problem on the perturbations of the spectrum by

the mean zonal wind.
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